

C14-EE/CHPP-103

4042

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV-2015 DEEE-FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Write any three advantages of SI system of units.
- 2. State and explain triangle law of vectors.
- **3.** A stone is projected vertically upwards from the top of a tower with a velocity of 9.8 m/s. It reached the ground after 6 s. What is the height of the tower $(g \ 9.8 \text{ m/s}^2)$?
- **4.** Define the following terms in SHM:
 - (a) Amplitude
 - (b) Time period
 - (c) Phase
- **5.** 2000 J of heat is given to a gas, when its volume increases by $3 ext{ } 10^{3} ext{ } \text{m}^{3}$ at a constant pressure of 10^{5} Pa. What is the increase in the internal energy of the gas?

6. Write Sabine's formula for reverberation time and explain the terms involved. **7.** What is the effect of temperature on viscosity of liquids and gases? **8.** Define capillarity and give two examples. 9. Define magnetic moment and magnetic induction field strength. **10.** Write any three applications of photoelectric effect. PART—B $10 \times 5 = 50$ **Instructions**: (1) Answer any **five** questions. (2) Each question carries **ten** marks. (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer. **11.** (a) Define scalar product and vector product of two vectors. Write two examples for each. 6 (b) Two forces of magnitudes 30 N and 40 N are acting on a body perpendicular to each other. Find resultant force both in magnitude and direction. 4 **12.** (a) Derive the expression for maximum height and horizontal range of a projectile in oblique projection. 6 (b) When a body is projected, if the maximum height reached and horizontal range are equal, what would be the angle of projection? 4 **13.** (a) Define coefficient of friction and angle of repose. 3 4 (b) Explain any four methods to minimize the friction. (c) A body is sliding down on a rough inclined plane which makes an angle 45° with the horizontal. Calculate the

3

acceleration of a body, if coefficient of friction

14.	(a)	Define potential energy and give one example.	2
	(b)	Derive the expression for kinetic energy of a body of mass m and moving with a velocity v .	4
	(c)	A body falling from a height of 10 m bounces from a hard floor. How much height will it rise, if it loses 20% of its energy after impact?	4
15.	(a)	Derive the expression for time period of simple pendulum.	6
	(b)	A body executes SHM with amplitude of 0.5 m and time period 3.14 second. Find the velocity of the body when the displacement of 0.4 m from its mean position.	4
16.	(a)	Show that C_p C_v R .	6
	(b)	Calculate the value of universal gas constant R for one gram mole of gas at NTP.	4
17.	(a)	What is noise pollution? Mention any four sources of noise pollution.	6
	(b)	Write any four applications of Doppler effect.	4
18.	(a)	State Kirchhoff's laws of electricity.	4
	(b)	Derive an expression for magnetic induction field strength at a point on the axial line of bar magnet.	6

* * *