

4046

BOARD DIPLOMA EXAMINATION, (C-14) SEPTEMBER/OCTOBER - 2020 DEEE—FIRST YEAR EXAMINATION

BASIC ELECTRICAL ENGINEERING

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

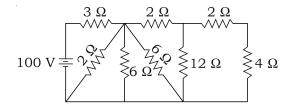
Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Define the following terms:
 - (a) Potential difference
 - (b) EMF
- 2. State Ohm's law and give the equation with units.
- **3**. Define thermal efficiency.
- 4. State Joule's law of electric heating.
- **5**. Define the following terms :
 - (a) Magnetic flux
 - (b) Magnetic flux density
- **6**. State Biot-Savart law.

/4046 1 [Contd....

- 7. State Fleming's right-hand rule.
- **8**. Find the area required for such an electromagnet to have a lifting power of 400 kg with a flux density of 0·1 weber/sq. meter.
- **9**. Define the following:
 - (a) Electric flux
 - (b) Electric flux density
 - (c) Electric field intensity
- **10**. Define capacitance and state its units.

PART—B


 $10 \times 5 = 50$

5

5

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11**. (a) Derive the formula for equivalent resistance of three resistances in parallel.
 - (b) The resistance of a conductor at 10 °C is 5 ohm and at 100 °C is 12 ohm. Find the resistance at 0 °C and also find temperature coefficient at 40 °C.
- **12**. Find the total current *I* in the given circuit :

/4046

[Contd....

2

13 .	A household has the following load :	
	(a) 10 lamps of 60 W each, working for 10 hours a day	
	(b) 1 electric iron of 450 W, working for 1 hour a day	
	(c) 8 fans of 80 W each, working for 12 hours a day	
	(d) 1 heater of 1000 W, working for 1 hour a day	
	(e) 1 refrigerator 250 W, working for 12 hours a day	
	Calculate the monthly bill, if the rate of charge per unit is ₹ 1.20 plus ₹ 20 as meter rent.	10
14.	An electric kettle is rated 1.5 kW, 230 V takes 5 minutes to bring 1 kg of water to boiling point from 150 °C. Find the efficiency of the kettle.	10
15 .	(a) Explain work law and its applications.	5
	(b) Derive an expression for force between two parallel current-carrying conductors.	5
16.	(a) State Faraday's laws of electromagnetic induction.	5
	(b) Compare an electric circuit with a magnetic circuit in any five aspects.	5
17 .	(a) Derive an expression for lifting power of a magnet.	5
	(b) An inductor with 10Ω resistance and $200\mathrm{mH}$ inductance is connected to $24\mathrm{V}$ d.c. supply. Calculate the energy stored in the inductance and power absorbed.	5
18.	(a) Derive an expression for energy stored in a capacitor.	5
	(b) Three capacitors 20 mF; 40 mF and 100 mF are connected in (i) series, (ii) parallel across a 400 V supply. Find the energy stored in each case.	5
	energy stored in each case.	

* * *

/4046 3 AA20—PDF