C14-EE-303

4245

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2016
 DEEE-THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

Time : 3 hours]
[Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the terms branch, loop and junction of an electrical network.
2. Define unilateral circuit and bilateral circuit with an example of each.
$1_{1 / 2}+1 \frac{1}{2}$
3. Define the following terms :
$1+1+1$
(a) Instantaneous value
(b) Form factor
(c) Peak factor of an alternating quantity
4. Derive average value of a half-wave rectified sine wave.
5. A sinusoidal voltage has a maximum value of 100 V with 50 Hz frequency. Find (a) instantaneous value after 0.002 sec and (b) the time taken to reach 45 V for the first time. $1 \frac{1}{1} 2+1 \frac{1}{2}$
6. Draw the graphical representation of series resonance by showing (a) resonant frequency, (b) impedance and (c) current.

$$
1+1+1
$$

7. Derive an expression for the impedance of R - $L-C$ series circuit. 3
8. Why is a parallel resonant circuit called as rejector circuit? 3
9. Compare between star and delta connection of 3-phase system. 3
10. Three similar coils connected in star take a total power of 1.5 kW at a power factor of 0.2 lag from a $3-\mathrm{ph} 400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the resistance and inductance of each coil.

PART—B
$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) State Kirchhoff's laws.

3
(b) Find the current through 5Ω resistor for the network shown in Fig. 1 by using Kirchhoff's laws.

Fig. 1
12. (a) Find the equivalent resistance between X and Y for the circuit shown in Fig. 2.

Fig. 2
[Contd...
(b) Find the current supplied by the battery using star/delta transformation for the circuit shown in Fig. 3.

Fig. 3
13. (a) Determine the current through 10 ohm resistor of the network shown in Fig. 4 by using Norton's theorem.

Fig. 4
(b) Find the value of R_{1} of the network shown in Fig. 5 for which the power absorbed will be maximum. Also, find the value of maximum power.

Fig. 5
14. (a) Derive the relationship between poles, speed and frequency.
(b) Define RMS value of an alternating current and derive its formula by using analytical method.
15. (a) Draw the impedance triangle of $R-L$ and $R-C$ series circuits.
(b) A coil A takes a current of 20 A at a power factor of 0.8 lag with an applied voltage of 100 V . Another coil B takes a current of 20 A at a power factor of $0 \cdot 7 \mathrm{lag}$ with an applied voltage of 50 V . What voltage will be required to produce a total current of 20 A with the two coils A and B in series.
16. A series R - L-C circuit with a resistance of 50 ohms, a capacitance of $25 \mu \mathrm{~F}$ and an inductance of 0.15 H is connected across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine the impedance, current, power factor and power consumption of the circuit. Also draw the relevant phasor diagram.
17. Three impedances $Z_{1}=(19 \cdot 23-j 12 \cdot 82) \Omega, Z_{2}=(0-j 62 \cdot 5) \Omega$ and $Z_{3}=(12+j 15) \Omega$ are connected in parallel across a 100 V , 50 Hz a.c. supply. Find the current in each branch and total current.
18. (a) What are the effects of load power factor on wattmeter readings of a 3-ph a.c. circuit?
(b) Three identical coils connected in delta to a $415 \mathrm{~V}, 50 \mathrm{~Hz}$, $3-\mathrm{ph}$ a.c. supply takes a line current of 5 A at a power factor of 0.8 lag. If these coils are connected in star to the same supply calculate the line current and total power.

