C14-EE-303

4245

BOARD DIPLOMA EXAMINATION, (C-14) OCT/NOV—2016
 DEEE-THIRD SEMESTER EXAMINATION

ELECTRICAL CIRCUITS

Time: 3 hours]
[Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answer should be brief and straight to the point and shall not exceed five simple sentences.

1. Define an active circuit and draw an active circuit. $2+1$
2. State the formulae to transform a delta network into a star network and vice versa.3
3. Derive the relation among poles, speed and frequency. 3
4. Define (a) instantaneous value and (b) frequency. 3
5. Perform (a) $A * B$ (b) A / B where $A=6+j 8$ and $B=8-j 10$. 3
6. Define inductive reactance and write down the formula to calculate it.
7. Derive an expression for current flowing in $R-C$ series circuit. 3
8. State the condition for parallel resonance and mention the formula for it.
9. List any three advantages of polyphase circuits. 3
10. Write down the relation between phase quantities and line quantities in a star network.
[Contd...

PART-B
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) State and explain Kirchhoff's laws.

5
(b) Find the equivalent resistance between the terminals A and B.

12. Two batteries having e.m.f's 80 V and 90 V with internal resistance of 0.2Ω and 0.22Ω respectively are connected in parallel. This combination is connected through 5Ω resistor to a 200 V DC supply. The positive poles of batteries being connected to the positive pole of the supply. Find (a) the magnitude and direction of current in each battery and (b) power dissipated in 5Ω resistor.
13. (a) State superposition theorem.
(b) State and explain maximum power transfer theorem. Also derive an expression for maximum power.
14. An alternating quantity is given by the expression $i=50 \sin 628 t$. Determine (a) maximum value of current, (b) RMS value of current, (c) frequency, (d) value of the current after $t=0.00625$ second and (e) time taken by the current to reach a value of 20 A from the initial position.
15. A current of 5 A flows through a non-inductive resistance in series with a coil when supplied at $250 \mathrm{~V}, 50 \mathrm{~Hz}$. If the voltage across the resistance is 125 V and across the coil is 200 V , calculate (a) impedance of the coil $\left(Z_{\text {coil }}\right)$, (b) reactance, (c) resistance of coil ($R_{\text {coil }}$), (d) p.f. of the coil and (e) total power consumed in the circuit.
16. Two impedances one inductive and the other capacitive are connected in series. A voltage of $120 \angle 30^{\circ} \mathrm{V}$ of frequency 50 Hz is impressed across the combination and the current flowing through the circuit is $3 \angle-15^{\circ} \mathrm{A}$. If one of the impedances is $(10+j 48 \cdot 3) \Omega$, find (a) the value of capacitance in the circuit, (b) the value of inductance in the circuit and (c) the second impedance of the circuit.
17. An inductive coil is connected in parallel with a pure resistor of 30Ω and this parallel circuit is connected to 50 Hz supply. The total current taken by the circuit is 8 A , while the current in the resistor is 4 A and that of inductive coil is 6 A . Calculate (a) resistance and inductance of the coil, (b) p.f. of the circuit and (c) power taken by the circuit.
18. Three coils each having a resistance of 20Ω and inductive reactance of 15Ω are connected in star to a $3-\phi, 400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (a) line current, (b) power factor and (c) power consumed.

