C14-EE-401/C14-CHPP-401/ C14-PET-401

4461
 BOARD DIPLOMA EXAMINATION, (C-14)
 MARCH/APRIL-2018
 DEEE-FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-III
Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve $\left(D^{2}-6 D+4\right) y=0$.
2. Solve $\left(D^{3}-2 D^{2}-3 D\right) y=0$.
3. Find the particular integral of $\left(D^{2}+4\right) y=\cos 4 x$.
4. Find $L\left(\sin ^{2} 2 t\right)$.
5. Find $L\left(t^{3} e^{-5 t}\right)$.
6. Evaluate $\int_{0}^{\infty} e^{-4 t} \cos 3 t d t$
7. Find $L^{-1}\left(\frac{1}{s(s+2)}\right)$.
8. Find the Fourier coefficient b_{n} for the function $f(x)=x$ in the interval (0, π).
9. Write the Fourier series for the function $f(x)$ defined in the interval ($c, c+2 \pi$).
10. A bag contains 5 black, 7 red and 4 white balls. A ball is drawn at random. Find the probability that the ball drawn is white.

PART-B
$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
11. (a) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=e^{3 x} \sinh 2 x$
(b) Solve $\left(D^{3}+4 D\right) y=\operatorname{Cos} 2 x$
12. (a) Solve $\left(D^{2}-4 D+3\right) y=x^{2}$
(b) Find the particular integral of $\left(D^{2}+D-2\right) y=x+\sin x$
13. (a) Find $L\left(\frac{1-\cos t}{t}\right)$.
(b) Find $\left(\int_{0}^{t} t e^{-t} \sin t d t\right)$
14. Using Laplace transform method, solve
$Y^{\prime \prime \prime}+2 Y^{\prime \prime}-Y^{\prime}-2 Y=0$ given $Y(0)=Y^{\prime}(0)=0$ and $Y^{\prime \prime \prime}(0)=6$.
15. Obtain the Fourier series of $f(x)=e^{a x}$ in the interval
$-\pi<x<\pi$.
16. Find the Fourier series of the function $f(x)$ given by $f(x)=x-2$ in the interval 0 to 2π.
17. (a) The probability for a contractor to get a road contract is $\frac{2}{3}$ and to get a building contract is $\frac{5}{9}$. The probability to get at least one contract is $\frac{4}{5}$. Find the probability that he gets the both the contracts.
(b) A card is selected at a random from a pack of cards. Let ' A ' be the event that card is below 5 and ' B ' be the event that the card is heart. Show that A and B are independent events.
18. There are two identical boxes containing respectively 3 blue, 2 red marbles; and 2 blue, 5 red marbles. A marble is drawn at random from one of the boxes turns out to be blue. What is the probability that it came from the first box?

