4461

BOARD DIPLOMA EXAMINATION, (C-14) JUNE-2019

DAEEE-FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-III
Time : 3 hours]

PART—A

Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Solve $\left(D^{2}-6 D+8\right) y=0$.
2. Solve $\left(D^{4}-18 D^{2}+81\right) y=0$.
3. Find the particular integral for $\left(D^{2}-1\right) y=x^{2}$.
4. Find $L\left\{3 t^{2}+2 \cos 2 t+e^{-t}\right\}$.
5. Find $L\left\{t^{7} e^{15 t}\right\}$.
6. Find $L^{-1}\left(\frac{s}{(s+2)(s-1)}\right)$.
7. Find $L^{-1}\left(\frac{2 s-5}{s^{2}+4}\right)$.
8. Write the formulae for Fourier series of a function $f(x)$ in the interval $[c, c+2 \pi]$.
9. Find the constant term in the Fourier series corresponding to $f(x)=x+x^{3}$ in $(-\pi, \pi)$.
10. Find the probability of getting two heads when three coins are tossed.

PART—B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Solve $\left(D^{2}-7 D+10\right) y=3 e^{5 x}$.
(b) Find the particular integral of $\left(D^{2}+D+9\right) y=\sin 3 x$.
12. (a) Solve $\left(D^{2}-16\right) y=\cosh x$.
(b) Solve $\left(D^{2}+D+2\right) y=x^{2}$.
13. (a) Find $L\left\{e^{t}\left(t^{2}-6 t+7\right)\right\}$.
(b) Find $L\left\{\frac{1-\cos t}{t}\right\}$.
14. (a) Find $L^{-1}\left\{\frac{s}{(s+1)(s+2)}\right\}$.
(b) Using convolution theorem find $L^{-1}\left\{\frac{1}{\left(s^{2}+9\right)(s+3)}\right\}$.
15. Express $f(x)=x$ as a Fourier series in $(-\pi, \pi)$.
16. Obtain the Fourier series to represent $f(x)=\frac{1}{4}(\pi-x)^{2}$ for the interval $(0,2 \pi)$.
17. (a) A committee of two persons is selected from two men and two women. Find the chance that the committee will have (i) no man, (ii) one man.
(b) What is the probability that a leap year, selected at random, will have 53 sundays?
18. (a) Two dice are tossed once. Find the probability of getting an even number on the first die or a total of 8 .
(b) A problem in statistics is given to three students A, B, C whose chances of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ respectively. If they try it independently, what is the probability, that the problem will be solved?

