

C14-EE-401/C14-CHPP-401/C14-PET-401

4461

BOARD DIPLOMA EXAMINATION, (C-14)

OCT/NOV—2016

DEEE-FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-III
Time: 3 hours]
[Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve $\left(D^{2}+2 D+5\right) y=0$.
2. Solve $\left(D^{2}-10 D+25\right) y=0$.
3. Find the particular integral of $\left(D^{2}+9\right) y=\sin 3 x$.
4. Find the Laplace transform of the function $t^{2}+\sinh 2 t+\sin 2 t$.
5. Find $L\left((t+1)^{2}\right)$.
6. Find $L\left(e^{2 t} \cos 3 t\right)$.
7. Find the inverse Laplace transform of $\frac{s+1}{s^{2}+4}$.
8. Write down the Fourier's series expansion of a function $f(x)$ in the interval $(-1,1)$. Give the corresponding formulae for finding the Fourier's coefficients.
9. Calculate the Fourier's coefficient a_{n} for Fourier's series expansion of the function $f(x)=x$ in the interval $(0,2 \pi)$.
10. If a coin is tossed twice, what is the probability of getting head at least once?

> PART—B
$10 \times 5=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Solve the differential equation $\left(D^{2}-7 D+10\right) y=3 e^{5 x}$.
(b) Find the particular integral of $\left(D^{2}+D+9\right) y=\sin 3 x+\cos 2 x$.
12. (a) Solve $\left(D^{2}-16\right) y=\cosh 4 x$.
(b) Solve $\left(D^{2}+D+2\right) y=x^{2}$.
13. (a) Find $L\left(t e^{-2 t} \sin 3 t\right)$.
(b) Using convolution theorem, find $L^{-1}\left(\frac{1}{(s+a)(s+b)}\right)$.
14. (a) Find the Laplace transform of $\frac{e^{t}+\cos t}{t}$.
(b) Find $L^{-1}\left(\frac{s+2}{s^{2}+4 s+8}\right)$.
15. Obtain the Fourier's series expansion of the function $f(x)=x(1-x)$ in the interval $(-1,1)$.
16. Find the Fourier's series expansion for $f(x)=\left\{\begin{array}{l}k \text { for }-\pi<x<0 \\ x \text { for } 0<x<\pi\end{array}\right.$ for any constant k.
17. (a) State the addition theorem on probability. A card is drawn from a pack of 52 cards. Find the probability that the drawn card is a spade or a king, using addition theorem on probability.
(b) A committee of five members is to be formed from six men and five women. Find the probability that the committee has at least two women members.
18. (a) It is noticed that a person A speaks truth in 60% of cases while B speaks truth in 80% of cases. If they are narrating same incident, what is the probability they are likely to contradict each other?
(b) A coin is tossed three times. What is the probability that(i) head appears at least twice;
(ii) tail appears twice in a row?

