C14-EE-407

4467

BOARD DIPLOMA EXAMINATION, (C-14)
MARCH/APRIL-2016
DEEE-FOURTH SEMESTER EXAMINATION
ELECTRICAL ENGINEERING DRAWING
Time : 3 hours]
Total Marks : 60
PART—A
$5 \times 4=20$
Instructions : (1) Answer all questions.
(2) Each question carries five marks.

1. Draw the cartridge fuse (not to scale) and label the parts.
2. Draw neatly the wiring diagram of star/delta starter used for 3 -phase induction motor (not to scale).
3. Draw the neat sketch of valve-type lightning arrestor and label the parts (not to scale).
4. Draw the neat sketch of $220-\mathrm{kV}$ steel tower for double circuit with standard dimensions.

PART—B
$20 \times 2=40$
Instructions : (1) Answer any two questions.
(2) Each question carries twenty marks.
(3) The scale should be mentioned for dimensional drawings.
5. (a) Draw the simple lap winding diagram (progressive winding) and ring diagram for a 2 -pole DC machine having the following data :

Number of slots :28
Number of conductors/slot : 1 (one conductor in each slot)
Number of commutator segments : 14
Also show the brush positions.
[Contd...
(b) The isometric views of the field pole coil and field pole of a DC machine is shown in the following two figures :

FIELD POLE

FIELD POLE COIL

Draw the assembled sectional view (only sectional elevation) by taking suitable scale.
6. (a) Draw neatly $350-\mathrm{kVA}, 11 \mathrm{kV} / 440 \mathrm{~V}$ distribution transformer mounted on plinth with two poles of each having pole length 10 m each and the spacing between the two poles is 2.44 m . [Assume any other missing data and take suitable scale]
(b) Draw the neat sketch of GI plate earthing with proper dimensions as per Indian standard and label the parts. [Assume suitable scale]
7. (a) Draw the sectional plan (sectional top view) of a 1-phase, 230/690-V, $15-\mathrm{kVA}$ transformer with the following data: 10

Cross-section of the core : Cruciform type
Diameter of the circumference circle of the core : 60 mm
Distance between core centres : 190 mm
Outer diameter of 1 st layer of LT winding : 90 mm
Inner diameter of 1 st layer
of LT winding : 65 mm
Thickness of 2 nd layer of LT winding $\quad: 12.5 \mathrm{~mm}$
Inner diameter of HT winding $: 125 \mathrm{~mm}$
Outer diameter of HT winding : 175 mm
[Take suitable scale and assume any missing data]
(b) Draw the half-sectional end view of a $7 \cdot 5-\mathrm{HP}, 440-\mathrm{V}, 50-\mathrm{Hz}$, 3-phase squirrel-cage induction motor with the following main dimensions :

Outside diameter of stator stamping : 280 mm
Inside diameter of stator stamping : 160 mm
Thickness of stator frame $: 25 \mathrm{~mm}$
Number of stator slots (taper-type slots) : 36 slots
Stator slot size $: 25 \mathrm{~mm}$ depth

Width of teeth	$: 6 \mathrm{~mm}$ parallel
Air gap	$: 3 \mathrm{~mm}$
Number of rotor slots	
(rectangle type)	$: 30$ slots
Rotor slot size	$: 10 \mathrm{~mm} \times 5.25 \mathrm{~mm}$
Width of footrest	$: 70 \mathrm{~mm}$
Distance between footrests	$: 214 \mathrm{~mm}$
Size of bolt holes in the footrest	$: 16 \mathrm{~mm}$ dia
Outer diameter of lifting eye	$: 46 \mathrm{~mm}$
Inner diameter of lifting eye	$: 30 \mathrm{~mm}$
Shaft diameter	$: 38 \mathrm{~mm}$
Number of ducts (equally spaced)	$: 8$
on the stator frame	$: 8$
Number of ducts (equally spaced)	

[Take suitable scale and assume any missing dimensions]

