С14- м-105

4054

BOARD DIPLOMA EXAMINATION, (C-14)
 MARCH / APRIL-2019
 DME - FIRST YEAR EXAMINATION
 ENGINEERING MECHANICS

Time: 3 Hours
Max. Marks: 80
PART-A
$10 \times 3=30 \mathrm{M}$
Instructions: 1) Answer all questions. Each question carries three marks
2) Answer should be brief and straight to the point

1) State any three conditions of equilibrium of a body acted upon by coplanar forces.
2) State parallelogram laws of forces.
3) Calculate coefficient of friction when $F=69 \mathrm{~N}, \mathrm{R}=140 \mathrm{~N}$.
4) State the law of static friction.
5) Define Moment of Inertia.
6) State D'Alemberts principle.
7) Define Kinematics and Kinetics.
8) Write any three differences between reversible machine and self locking machine.
9) Mention the uses of simple machine.
10) What is inversion of a mechanism and give examlpes of it.

Instructions : 1) ${ }_{\star}$ Answer any five questions
2) Each question carries ten marks
3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11) Find the magnitude and direction of the single force that brings the following system of concurrent forces into equilibrium.

A force of 20 N acting due east
A force of 25 N acting 40° north of east
A force of 10 N acting 50° west of north
A force of 30 N acting vertically downwards.
12) An effort of 1500 N is required to just move certain body up an inclined plane of angle 12°, acting parallel to the plane. If the angle of inclination is increased to 15°, then the effort required is 1720 N . Find the weight of the body and the coefficient of friction.
13) An I section is made up of 3 rectangles as shown in fig. Find Moment of Inertia of the section about the horizontal axis passing through the Centre of Gravity of the section.

(All dimensions are in mm)
14) a) Determine the position of centroid and calculate the moment of inertia about its horizontal centroidal axis of a T-Section which has flange200 $\mathrm{mm} \times 50 \mathrm{~mm}$ and web $200 \mathrm{~mm} \times 50 \mathrm{~mm}$. 6M
b) State lammi's theorem and triangle law of forces.
15) A point moves with S.H.M. When this point is 0.75 m from the mid path, its velocity is ${ }_{\star} 11 \mathrm{~m} / \mathrm{s}$ and when 2 meters from the center of its path velocity is $3 \mathrm{~m}^{\star} / \mathrm{s}$. Find its angular velocity, periodic time and its maximum acceleration.
16) A man of 800 kg is accelerated from rest for 30 sec at the end of which time its velocity is $15 \mathrm{~m} / \mathrm{s}$. What is a) final kinetic energy and b) the power expended.
17) A load of 3500 N is lifted by the first system pulley in which three pulleys are movable, find the V.R if the efficiency is 85%. Also find the effort required and the effect of friction.
18) a) Define the following terms of simple machines, 8M
a) Machine
b) Mechanical advantage
c) Velocity ratio
d) Efficiency
b) Define lower pair and higher pair and give examples.

