4253
 BOARD DIPLOMA EXAMINATION,(C-14)
 JUNE-2019
 DME - THI RD SEMESTER EXAMI NATI ON
 STRENGTH OF MATERIALS

Time: 3Hrs
Max.Marks: 80

PART - A

$10 \times 3=30 \mathrm{M}$
Intstructions: 1) Answer all the questions. and Each question carries three marks.
2) Answer should be brife \& straight to the point and shall not exceed five simple sentences.

1) Briefly explain about composite bar .
2) A brass specimen has modulus of elasticity of $1.2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and shear modulus is $0.5 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Compute the poisson's ratio.
3) Derive an expression for strain energy of a uniform bar.
4) Define the following terms:
a) Shear force diagram and
b) Point of contra flexure.
5) A cantilever beam 3 m long carrying a UDL of $2 \mathrm{KN} / \mathrm{m}$ over the entire beam. Draw the shear force and bending moment diagrams.
6) A steel strip of thickness 4 mm is coiled on a drum of 1.4 m diameter. Calculate the maximum stress produced by the coiling. Take $\mathrm{E}=2.0 \mathrm{x}$ $10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
7) A cantilever of 5 m . long carried a UDL of $8.4 \mathrm{KN} / \mathrm{m}$ over the entire length. Calculate the deflection at free end. Assume $\mathrm{E}=2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. and $\mathrm{I}=0.8 \times 10^{8} \mathrm{~mm}^{4}$.
8) Write the advantages of using hollow shafts over solid shafts.
9) A closed coiled helicaql spring is made up of 10 mm diameter steel wire has 15 coils of 100 mm mean diameter. Calculate the stiffness of the spring if $G=8.16 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.
10) A boiler shell of 1260 mm diameter and 15 mm thick plate having the efficiency of longitudinal joint is 70%. Determine the minimum tensile stress induced in the shaft, when the internal pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$.

PART - B

$$
5 \times 10=50 M
$$

Intstructions: 1) Answer any five questions. Each question carries ten marks
2) Answer should comprehensive and they criterion for valuation is the content but not length of the Answer.
11) A composite bar is made up of two different materials of 1 m long is of 50 mm diameter aluminum over a portion of 0.6 m long and 25 mm diameter of steel bar over the remainder. The bars are stress free at a temperature of $30^{\circ} \mathrm{C}$. What will be the stresses in the two bars when the temperature is $21^{\circ} \mathrm{C}$ if the supports are unyielding.

$$
\text { Assume } \begin{aligned}
\alpha_{\mathrm{a}} & =22.5 \times 10^{-6} /{ }^{\circ} \mathrm{C} & \text { and } & \alpha_{\mathrm{s}}
\end{aligned}=12 \times 10^{-6} /{ }^{\circ} \mathrm{C} . \mathrm{m}^{2} .
$$

12) A bar 3 m long and 50 mm diamter hangs vertically has a collar securely attachwed at the lower end. Find the maximum stress induced. When : a) A weight of 250 N falls from 120 mm on to the collar and
b) A weight of 2500 N falls from 10 mm on to the collar. Take $\mathrm{E}=2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
13) a) A bar of 25 mm diameter and 210 mm is subjected to an axial pull of 50 KN . Calculate the change in volume if $\mathrm{E}=2.13 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. and $1 / \mathrm{m}=0.336$
b) Draw the shear force and bending moment diagrams for a beam shown in the figure:

14) A freely supported beam of span 4 m has exteneded 1 m on right hand support. It is loaded with two point loads of 2 KN and 4 KN at a distance of 3 m and 5 m from its left end respectively. And also a UDL of $2 \mathrm{KN} / \mathrm{m}$ is spread over 3 m from left end. Draw shear force and bending moment diagrams.
15) Derive the expression for the bending equation.
16) A wagon weighing 30 KN . Moving at 7.2 KMPH . How many springs each of 18 coils will be required in a buffer stop the energy of motion during a compression of 250 mm . The mean diameter is 25 mm .
Take $G=0.9 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
17) a) A solid shaft of diameter 10 mm is subjected to a torque of $15 \mathrm{~N}-\mathrm{m}$. Calculate the angle of twist over a length of 250 mm . Take $G=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
b) A simply supported beam with a central point load on a span of 4 m and the maximum bending stress is $8 \mathrm{~N} / \mathrm{mm}^{2}$. What is the maximum deflection when the moment of resistance is $18 \mathrm{KN}-\mathrm{m}$. Assume $\mathrm{I}=3.4 \times 10^{8} \mathrm{~mm}^{4}$ and $\mathrm{E}=0.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
18) A cylindrical bolier shell is to withstand an internal pressure of $1 \mathrm{~N} / \mathrm{mm}^{2}$. The plate is 10 mm thick, the longitudinal efficiency of the joiont is 90% while the circumferential one is 50%. Design the boiler shell diameter. If the ultimate stress is $350 \mathrm{~N} / \mathrm{mm}^{2}$ and factor of safety is 4 .
