

C14-M-401/C14-CHOT-401/C14-RAC-401 4477

BOARD DIPLOMA EXAMINATION, (C-14)
 MARCH/APRIL-2016
 DME-FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-III
Time : 3 hours] Total Marks : 80

PART—A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve :

$$
\left(D^{2}-4 D+1\right) y=0
$$

2. Solve :

$$
\left(D^{3}-D^{2}-D+1\right) y=0
$$

3. Find the particular integral of $\left(D^{2}-1\right) y=e^{x}$.
4. Find $L\left(\cos ^{2} 2 t\right)$.
5. Evaluate $\int_{0}^{\infty} t e^{-3 t} d t$.
6. Find inverse Laplace transform of

$$
\left(\frac{2}{S^{2}+4}+\frac{3 S}{S^{2}+9}\right)
$$

[Contd...
7. Find

$$
L^{-1}\left(\frac{S}{(S+2)^{2}-4}\right)
$$

8. Write down the formulas for finding Fourier constants for $f(x)$ in $(-\pi, \pi)$.
9. Obtain the sine series of unity in $(0, \pi)$.
10. When two dice are thrown, find the probability of obtaining the total score 7.

PART-B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Solve :

$$
\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+6 y=e^{3 x}
$$

(b) Solve :

$$
\left(D^{2}-3 D+2\right) y=2 x^{2}
$$

12. (a) Solve :

$$
\left(D^{2}+4\right) y=\cos 2 x+\sin x
$$

(b) Solve :

$$
\left(D^{2}-5 D+6\right) y=\left(e^{x}+1\right)^{2}
$$

13. (a) Find

$$
L\left(t e^{3 t} \sin 2 t\right)
$$

(b) Find

$$
L\left(\frac{e^{a t}-\cos b t}{t}\right)
$$

14. Solve the differential equation

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=\sin t
$$

if $y(0)=y^{\prime}(0)=0$ by using Laplace transform method.
15. Find the Fourier series for $f(x)=x-x^{2}$ for the interval $(-\pi, \pi)$ and hence show that

$$
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\ldots . .=\frac{\pi^{2}}{12}
$$

16. Expand $f(x)=e^{x}$ in the interval $(0,2 \pi)$.
17. State and prove addition theorem of probability.
18. (a) A box contains 20 screws, 5 of which are defective. 2 screws are drawn at random. Find the probability that neither of the 2 screws is defective.
(b) Evaluate $P(A \cup B)$ if $2 P(A)=P(B)=\frac{5}{13}$ and $P(A / B)=\frac{2}{5}$.
