4477

BOARD DIPLOMA EXAMINATION, (C-14) MARCH/APRIL-2018 DME-FOURTH SEMESTER EXAMINATION

PART-A
Instructions: (1) Answer all questions
(2) Each questions carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Solve $\left(D^{2}-2 D+5\right) y=0$
2. Solve $\left(D^{3}+2 D^{2}+D\right) y=0$
3. Find the particular integral of $\left(D^{2}-1\right) y=1+\operatorname{Cos} 3 x$
4. Find $L(\sin 3 t . \sin 4 t)$
5. Find $L\left(e^{-1} \operatorname{Cos} 2 t\right)$
6. Evaluate $\int_{0}^{\infty} e^{-3 t} \sin 4 t d t$
7. Find $L^{-1}\left(\frac{s}{(x+3)^{2}}\right)$
8. Find the value of b in $f(x)=\cos x$ in $(-\pi, \pi)$ by Fourier series.
9. Write the Dirichlet conditions for the existence of Fourier series for a function in given interval.
10. A committee of two persons is selected from two men.

PART-B
$5 \times 10=50$
Instructions: (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
11. (a) Solve $\left(D^{2}-D-12\right) y=e^{4 x}$
(b) Solve $\left(D^{2}-4 D+4\right) y=\cos 2 x$
12. (a) Solve $\left(D^{2}+4\right) y=x^{4}$
(b) Solve $\left(D^{2}-D^{2}-6 D\right) y=x+\sin x$
13. Using Laplace transform method, solve $\frac{d^{2} y}{d t^{2}}+y=t$ with conditions $y(0)=1, y(0)=-2$
14. Using convolution theorem, find $L \frac{1}{s(s-1)(s+2)}$
15. For A function $f(x)$ defined by $f(x)=|\sin x|$, obtain Fourier series in $(-\pi, \pi)$.
16. Find the Fourier series to represent $f(x)=2 x-x^{2}$ in the interval $(0,2)$.
17. (a) If one ticket is randomly selected from tickets numbered 1 to 30 , then find the probability that the number on the ticket is a multiple of 5 or 7 .
(b) The probability of a problem being solved by three students are, $\frac{1}{3} \cdot \frac{1}{4}, \frac{1}{5}$ find probability that the problem being solved.
18. Three boxes numbered I, II, III contain 1 white, 2 black and 3 red balls; 2 white, 1 black and 1 red ball; 4 white, 5 black and 3 red balls respectively. One box is randomly selected and a ball is drawn from it. If the ball is red, then find the probability that is from box II.

