

4478

BOARD DIPLOMA EXAMINATION, (C-14)

OCT/NOV-2018
DME-FOURTH SEMESTER EXAMINATION
DESIGN OF MACHINE ELEMENTS-I

PART—A

Instruction: (1) Answer all questions. Each question carries three marks.
(2) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the terms durability and reliability.
2. List out any six factors to be considered while designing a machine element. $0.5 \times 6=3$
3. How is a screw thread is designated, give an example.
4. List out the various types of screw fastenings.
5. State three advantages of welded joints over riveted joints.
6. Explain the terms of shaft, axle, and spindle.
7. What is a key ? State its functions.
8. What are the types of couplings ? Give an example of each type.
9. Write the difference between radial bearing and thrust bearing.
10. Write the types of rolling contact bearing.

Instruction: (1) Answer any five questions and each question carries ten marks.
(2) Answers should be comprehensive and the criteria for valuation is the content but not the length of the answers.
11. A bolt is subjected to an axial pull of 8 kN and transverse shear force of 3 kN . Determine the diameter of the bolt required based on,
(i) the maximum principal stress theory, and
(ii) the maximum shear stress theory.

Take elastic limit in simple tension equal to $270 \mathrm{~N} / \mathrm{mm} 2$ and factor of safety is 3 .
$5+5=10$
12. Design and draw an eye bolt to lift a load of 100 kN , when permissible tensile stress of the material is 100 MPa . Give the proportions of the eye bolt designed.
13. (a) A bar of 25 mm diameter is subjected to a direct tensile force of 60 kN . Calculate the normal and shear stresses on a plane at 35° to the flat end of the bar.
(b) Two machine components are fastened together tightly by means of a M50 bolt. If the load tending to separate them is neglected. Calculate the stress induced in the bolt due to initial tightening.
14. Two Plates of 10 mm thick are joined by a double riveted lap joint. The diameter of the rivets is 15 mm and pitch is 75 mm . If tensile stress is $110 \mathrm{~N} / \mathrm{mm} 2$, shear stress is $85 \mathrm{~N} / \mathrm{mm} 2$, and bearing stress is $140 \mathrm{~N} / \mathrm{mm} 2$. Determine the efficiency of the riveted joint.
15. A plate 150 mm wide and 12.5 mm thick is lapped over and welded to a gusset plate. Determine the minimum length of a 8 mm side fillet weld that will be necessary if the plate is subjected to an axial stress of $160 \mathrm{~N} / \mathrm{mm} 2$. Take an allowable shearing stress through the throat of the weld as $120 \mathrm{~N} / \mathrm{mm} 2$.
16. A mild steel shaft transmits 20 kW power at 200 RPM and is subjected to a bending moment of 560 Nm . The allowable shear stress and tensile stress are $42 \mathrm{~N} / \mathrm{mm} 2$ and $56 \mathrm{~N} / \mathrm{mm} 2$. What size of the shaft will be required if it is subjected to gradually applied loads.
17. Design and draw a muff coupling which is used to connect two steel shafts transmitting 80 kW at 150 RPM , allowable shear and crushing stresses for the shafts and key material are $40 \mathrm{~N} / \mathrm{mm} 2$ and $100 \mathrm{~N} / \mathrm{mm} 2$ respectively. The permissible shear stress in the muff is $15 \mathrm{~N} / \mathrm{mm} 2$ and maximum torque transmitted is 25% greater than the mean torque.
18. A flat foot step bearing 300 mm diameter supports a load of 25 kN . If the coefficient of friction is 0.05 and the speed 150 RPM. Calculate the power lost at the bearing under uniform pressure and uniform wear.

10

