6017
 BOARD DIPLOMA EXAMINATIONM
 JUNE -2019
 COMMON FIRST YEAR EXAMINATION
 ENGINEERING MATHEMATICS - I

Time: 3Hours
Max. Marks : 80
$P A R T-A$
$10 \times 3=30$

Instructions:

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not exceed FIVE simple sentences
(1) Resolve $\frac{1}{x^{2}(x+2)}$ into Partial Fractions
(2) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 5 \\ 6 & 7\end{array}\right]$ and $3 X+A=B$ then find X
(3) Evaluate $\left|\begin{array}{ccc}4 & 5 & 2 \\ -6 & 2 & 1 \\ -1 & 5 & 1\end{array}\right|$ using Laplace Expansion
(4) Prove that $\tan \left(45^{\circ}+A\right) \cdot \tan \left(45^{\circ}-A\right)=1$
(5) If $\cos \theta=\frac{3}{5}$ then find $\cos 2 \theta$ and $\cos 3 \theta$
(6) Find the multiplicative inverse of the complex number $\frac{10}{1+3 i}$
(7) Find the equation of the straight line passing through the points $(-4,3)$ and $(3,-2)$
(8) Find the point of intersection of the lines $5 x-7 y+1=0$ and $2 x+5 y-11=0$
(9) Evaluate $\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}+6 x+3}{5 x^{2}+7 x+9}\right)$
(10) Find the derivative of $x e^{x} \cos x$ with respect to x

$$
P A R T-B
$$

$$
5 \times 10=50
$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
(11) (a) Solve the equations $x+y+z=3, x+2 y+3 z=4$ and $x+4 y+9 z=6$ by Crammer's Rule
(b) Find the inverse of the matrix $\left[\begin{array}{ccc}2 & -2 & 4 \\ 2 & 3 & 2 \\ -1 & 1 & -1\end{array}\right]$
(12) (a) If $\sin \theta+\sin \phi=\frac{4}{5}$ and $\sin \theta-\sin \phi=\frac{2}{7}$ then prove that $5 \tan \left(\frac{\phi+\theta}{2}\right)+14 \tan \left(\frac{\phi-\theta}{2}\right)=0$
(b) Prove that $\operatorname{Tan}^{-1}\left(\frac{1}{4}\right)+\operatorname{Tan}^{-1}\left(\frac{3}{5}\right)=\frac{\pi}{4}$
(13) (a) Solve the equation $2 \cos ^{2} x+5 \cos x+2=0$
(b) In a $\Delta^{l e} A B C$ prove that $(a-b) \tan \left(\frac{A+B}{2}\right)=(a+b) \tan \left(\frac{A-B}{2}\right)$
(14) (a) Find the center and radius of the Circle whose equation is $5 x^{2}+5 y^{2}+30 x-20 y+1=0$
(b) Find the equation of the Parabola whose focus is the point $(3,4)$ and directrix is the line $2 x-3 y+4=0$
(15) (a) Find $\frac{d y}{d x}$, if $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
(b) Find $\frac{d y}{d x}$, if $y=(\cos x)^{(\cos x)^{(\cos x) \cdots \infty}}$
(16) (a) Find $\frac{d^{2} y}{d x^{2}}$, if $y=\frac{3 x+2}{x-5}$
(b) If $u(x, y)=\log \left(\frac{x^{4}+y^{4}}{x^{2}+y^{2}}\right)$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2$
(17) (a) Find the equations of tangent and normal to the curve $x=a(\theta+\sin \theta)$, $y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$
(b) The displacement s of a particle is given at any time t by the relation $s=t^{3}-9 t^{2}+24 t-18$. Find its velocity and acceleration when $t=3 \mathrm{sec}$
(18) (a) Find the maximum and minimum values of $f(x)=4 x^{3}-3 x^{2}-18 x+12$
(b) The pressure P and volume V of a gas are connected by the relation $P V^{\frac{1}{4}}=$ constant. Find the percentage increase in P if V is decreased by 3%

