C16-C/CM-102

6017

BOARD DIPLOMA EXAMINATION, (C-16) OCTOBER-2020 DCE-FIRST YEAR EXAMINATION ENGINEERING MATHEMATICS—I

Time : 3 hours]
[Total Marks : 80

PART—A

$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.

1. Resolve $\frac{x}{x^{2}-3 x+2}$ into partial fraction.
2. If $A=\left[\begin{array}{cc}2 & -4 \\ -5 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & -8 \\ 7 & 2\end{array}\right]$, find $2 A-2 B$.
3. Evaluate $\left|\begin{array}{lll}p & q & r \\ q & r & p \\ r & p & q\end{array}\right|$.
4. Prove that, $\frac{\cos 5^{\circ}-\sin 5^{\circ}}{\cos 5^{\circ}+\sin 5^{\circ}}=\cot 50^{\circ}$.
5. Prove that, $\sin \left(45^{\circ}+\theta\right) \sin \left(45^{\circ}-\theta\right)=\frac{1}{2} \cos 2 \theta$.
6. Find the modulus and multiplicative inverse of $-\sqrt{3}+i$.
7. Find the intercepts made by the line $3 x-7 y=1$, on the coordinate axes.
8. Find the distance between the parallel lines $5 x-y+5=0$ and $5 x-y+11=0$.
9. Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta+\sin 5 \theta}{8 \theta}$.
10. Differentiate $e^{-3 x} \cos x$, w.r.t. x.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Solve the equations $x+y+z=6, x-y-z=2$ and $2 x-y+z=1$ by Cramer's rule.
(b) Find the inverse of the matrix $\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & -3 & -4 \\ 1 & 2 & 1\end{array}\right]$.
12. (a) Prove that, $\cos 20^{\circ}-\cos 40^{\circ}-\cos 80^{\circ}=0$.
(b) If $\cot ^{-1} \frac{1}{x}+\cot ^{-1} \frac{1}{y}+\cot ^{-1} \frac{1}{z}=\frac{\pi}{2}$, then show that $x y+y z+z x=1$.
13. (a) Solve the equation $2 \sin ^{2} \theta-\sin \theta-1=0$.
(b) Solve the triangle $A B C$, if $\angle B=45^{\circ}, a=\sqrt{3}+1$ and $\angle C=60^{\circ}$.
14. (a) Find the equation of the circle with $(1,-1)$ and $(2,3)$ as the extremities of the diameter.
(b) Find the centre, vertices, eccentricity, foci and length of latus rectum of the hyperbola $9 y^{2}-4 x^{2}=36$.
15. (a) If $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, then find $\frac{d y}{d x}$.
(b) Find $\frac{d y}{d x}$, if $y=(\sin x)^{x}$.
16. (a) If $x=b \cos \theta, y=a \sin \theta$, find $\frac{d^{2} y}{d x^{2}}$.
(b) If $(x, y)=x^{2}+y^{2}+6 x y$, then find $\frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial y^{2}}, \frac{\partial^{2} u}{\partial x \partial y}$ and $\frac{\partial^{2} u}{\partial y \partial x}$.
17. (a) Find the equations of tangent and normal to the curve $y=x^{2}-2 x+1$, at the point $(-1,4)$.
(b) A circular path of oil spreads on water so that its area is increasing at the rate of $5 \mathrm{sqcm} / \mathrm{sec}$. How fast is the radius increasing when its radius is 3 cm ?
18. (a) The sum of two numbers is 36 . Find them so that their product is maximum.
(b) The radius of a spherical balloon is increased by 2%. Find the approximate percentage increase in its volume. Also find the approximate percentage increase in its surface area.

