C16-C-102/C16-CM-102

6017

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV—2017 DCE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Resolve $\frac{2 x+1}{(x-1)(2 x+3)}$ into partial fractions.
2. Compute $A^{2}-3 A$, if $A=\left(\begin{array}{rr}1 & -3 \\ -2 & 1\end{array}\right)$.
3. Evaluate $\left|\begin{array}{lll}g & f & c \\ a & h & g \\ h & b & f\end{array}\right|$ using Laplace's expansion.
4. Prove that $\tan 75^{\circ}+\cot 75^{\circ}=4$.
5. Prove that $\frac{\tan 2 \theta}{1+\sec 2 \theta}=\tan \theta$.
6. Find the real and imaginary parts of $\frac{4-2 i}{1+2 i}$.
www. ManaResults.co.in
[Contd...
7. Find the perpendicular distance of the point $(-3,5)$ from the line $3 x-4 y-26=0$.
8. Find the equation of straight line passing through $(3,-1)$ and parallel to $5 x+7 y-3=0$.
9. Find the limit of $\frac{\sin 7 x}{\tan 5 x}$ as $x \rightarrow 0$.
10. Find the derivative of $x \cot ^{-1} x$ w.r.t. x.

PART-B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) Find the inverse of the matrix $\left[\begin{array}{rrr}-2 & -2 & 4 \\ 3 & -3 & 1 \\ -1 & 4 & 1\end{array}\right]$.
(b) Solve the equations $x-y+z=2, \quad 2 x-3 y+4 z=-4$ and $3 x+y+z=8$ by Cramer's rule.
12. (a) Prove that $\frac{\sin 70^{\circ}-\sin 50^{\circ}}{\cos 50^{\circ}-\cos 70^{\circ}}=\frac{1}{\sqrt{3}}$.
(b) Prove that $\cos ^{-1} \frac{33}{65}-\sin ^{-1} \frac{5}{13}=\sin ^{-1} \frac{3}{5}$.
13. (a) Solve $\sin \theta-\cos \theta=\sqrt{2}$.
(b) If $a \cos A=b \cos B$, then prove that the triangle $A B C$ is either isosceles or right-angled triangle.
14. (a) Find the equation of the parabola whose focus is $(-1,2)$ and whose directrix is the line $3 x-4 y-5=0$.
(b) Find the equation of the circle passing through the points $(0,0)$, $(1,0)$ and $(0,1)$.
www.ManaResults.co.in
[Contd...
15. (a) Find the derivative of $\log (\cos (\log x))$ w.r.t. x.
(b) If $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$, then find $\frac{d^{2} y}{d x^{2}}$.
16. (a) Find the derivative of $\cos ^{-1}\left(4 x^{3}-3 x\right)$ w.r.t. x.
(b) If $u=\log \left(x^{2}+y^{2}+z^{2}\right)$, then prove that

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=2
$$

17. (a) Find the lengths of tangent, normal, subtangent and subnormal of the curve $y=x^{3}-2 x^{2}+4$ at the point $(3,13)$.
(b) A circular patch of oil spreads out on water and the area is growing at the rate of $3 \mathrm{sq} . \mathrm{cm} / \mathrm{sec}$. How fast does the radius increase, when the radius is 4 cm ?
18. (a) Find the dimensions of a rectangle of maximum area having a perimeter of 26 ft .
(b) The radius of spherical balloon is increased by 2%. Find the approximate the percentage increase in its surface area.
