6222

BOARD DIPLOMA EXAMINATIONS

COMMON-THIRD SEMISTER

OCT/NOV-2019

ENGINEERING MATHEMATICS - II

Time: 3 hours

 Max. Marks: 80$$
\text { PART - A } \quad \mathbf{3} \times 10=30
$$

Instructions: 1. Answer all questions.
2. Each question carries Three Marks.
3. Answer should be brief and straight to the point and should not exceed Five simple sentences.

1. Evaluate $\int\left(\frac{1}{2 \sqrt{x}}+7 \sec ^{2} \mathrm{x}+\frac{1}{x}\right) d x$
2. Evaluate $\int e^{5 x-7} d x$
3. Evaluate $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$
4. Find the mean value of $f(x)=\log x$ over the interval $[1, e]$
5. Find $L\{3 \cos 2 t-4 \sin 3 t\}$
6. Find $L^{-1}\left\{\frac{1}{s(s+2)}\right\}$
[Cont..,
7.

Find the value of a_{0} in the Fourier series expansion of the function $f(x)=e^{-x}$ in the interval $[0,2 \pi]$
8. Find the order and degree of the Differential Equation

$$
\frac{d^{3} y}{d x^{3}}=\log _{\mathrm{e}}\left(\mathrm{x} \frac{d^{2} y}{d x^{2}}+y\right)
$$

9. Solve $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$
10. Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=0$

PART - B

$5 \times 10=50$
Instructions: 1. Answer any Five questions
2. Each question carries TEN Marks.
3. Answer should be comprehensive and a criterion for valuation is the content but not the length of the answer.
11.
a) Evaluate $\int \sin ^{5} \theta \cos ^{3} \theta d x$
b) Evaluate $\int\left(\frac{1}{3+4 \cos x}\right) d x$
12.
a) Evaluate $\int x \sin x d x$
b) Evaluate $\int_{0}^{\pi / 2} \log \tan x d x$
13. (a)Find the area bounded by the curve $y^{2}=16 x, y$-axis and the line $y=2$ and $y=6$
(b)Using the method of integration find the volume of Cylinder with radius r units and height h units.
14. a) Calculate the approximate value of $\int_{-3}^{3} x^{4} d x$ using Simpson's rule by dividing $[-3,3]$ into 6 equal parts. Verify the result with its exact value by integration techniques.
b) Find $L\left\{t^{2} \cos t\right\}$
15. a) Find $\mathrm{L}^{-1}\left\{\frac{s}{(s+2)^{2}+4}\right\}$
b) using Convolution theorem Find $\mathrm{L}^{-1}\left\{\frac{1}{s\left(\mathrm{~s}^{2}+25\right)}\right\}$
16. Expand $f(x)=\mathrm{e}^{-\mathrm{x}},-\pi<\mathrm{x}<\pi$ in Fourier Series.
17. (a)Solve $\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$
(b) solve $\frac{d}{d x}+\frac{y}{1+\mathrm{x}^{2}}=\frac{\mathrm{e}^{\tan -1 \mathrm{x}}}{1+\mathrm{x}^{2}}$
18. a) Solve $\left(D^{2}+\mathrm{D}-6\right) y=\mathrm{e}^{3 \mathrm{x}}$, where $D=\frac{d y}{d x}$
b) Solve $\left(D^{3}+\mathrm{D}\right) y=\sin 2 x$

