

 $\mathbf{+}$

c16-c-**302**

6223

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL-2018

DCE—THIRD SEMESTER EXAMINATION

STRENGTH OF MATERIALS AND THEORY OF STRUCTURES

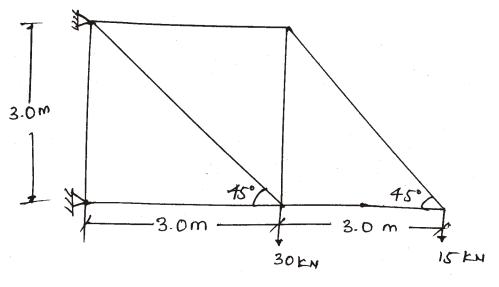
Time : 3 hours]		hours]	[Total Marks : 80	
		PART—A	3×10=30	
Inst	ructi	i ons : (1) Answer all questions.		
		(2) Each question carries three max	rks.	
		(3) Answers should be brief and strai shall not exceed <i>five</i> simple sen	0 1	
1.	Defi	ne the terms :	11/2+11/2	
	(a) 1	Moment of resistance		
	(b) (Curvature of beams		
2.	State the assumptions made in the theory of simple bending. 3			
3.	Defi	ne the following :	$1\frac{1}{2}+1\frac{1}{2}$	
	(a) \$	Slope		
	<i>(b)</i> 1	Deflection		
4.	Dist	inguish between the strength and stiffnes	s. 3	
5.	Men	tion the importance of a Mohr's circle.	3	
6.	to transmit a torque of 160 kN m so that the max. stress does			
	not	exceed 45 N / mm ² .	3	
/6223		1	[Contd	
		WWW.MANARESULTS.C	O.IN	

- 7. A cylindrical shell of 2.5 m diameter and 20 mm thick is subjected to an internal pressure of $3 \text{ N}/\text{mm}^2$. Find the circumferential and longitudinal stress developed in the material of the cylinder.
- 8. State the effective length of column for any three types of end conditions.
 9. List any three failures of a retaining wall.
 3
- **10.** Classify the types of frames.

PART—B 10×5=50

3

3


Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** A mild steel strap 10 mm thick and 250 mm wide is wound round on a bullock cart wheel of 1.5 mm radius. Determine the bending moment and max. bending stress developed in the strap. Take $E = 2 10^5$ N / mm².
- **12.** An I-section has two flanges of each 100 mm wide and 20 mm thick and web 120 mm high and 20 mm thick. If the section is subjected to a shearing force of 10 kN, find the values of maximum and average shear stress induced in the section.
- **13.** A simply supported beam of 6 m carries a point load of 20 kN at its centre. Calculate the slope at the ends and deflection at the mid span using Mohr's theorems. Take $EI = 5400 + 10^9 \text{ N-mm}^2$.
- **14.** A cantilever 4 m span carries two point loads of each 20 kN at 0 m and 2 m from free end. Find the max. slope and deflection using the moment area method. Take *EI* 8400 10^9 N-mm².
- **15.** A hollow cast iron column of external diameter 220 mm is to carry a load of 300 kN. Length of the column is 6 m and fixed at both ends. Determine the thickness required for the column by Rankine equation. Given $E = 210 \text{ kN} / \text{mm}^2$.
- /6223

[Contd...

WWW.MANARESULTS.CO.IN

- **16.** A hollow cast iron column where external diameter is 200 mm and internal diameter is 160 mm and is 4.5 m long and is fixed at both ends. Calculate the safe load by Rankine formula using factor of safety 4 and ratio of Euler and Rankine critical load. Given $E = 200 \text{ kN} / \text{mm}^2$, $f_c = 350 \text{ N} / \text{mm}^2$, $a = \frac{1}{1600}$.
- 17. A masonry dam of trapezoidal section is 2 m wide at top and 5 m wide at bottom is 8 m high and retains water on the vertical face to a height of 6 m. Find the maximum and minimum stress at the base and draw the stress diagram. Given specific weight of masonry is 22.5 kN/m³ and specific weight of water is 10 kN/m³.
- **18.** Find the magnitude and nature of forces in all the members of truss shown in fig. by method of joints.

 $\star \star \star$

3 AA8(A)—PDF WWW.MANARESULTS.CO.IN