c16-c-302

6223

BOARD DIPLOMA EXAMINATION, (C-16) OCT / NOV-2017 DCE-THIRD SEMESTER EXAMINATION

STRENGTH OF MATERIALS AND THEORY OF STRUCTURES

Time : 3 hours]
[Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the following :
(a) Flexural rigidity
(b) Neutral axis
(c) Section modulus
2. A square beam 150 mm side is subjected to a shear force of 15 kN . Calculate the value of maximum shear stress.
3. Draw the deflected shapes of :
(a) Cantilever beam
(b) Simply supported beam
/6223
www. ManaResults.co.in
[Contd...
4. A cantilever beam of span 4 m carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ over the entire span. Calculate the deflection at free end. Given $E I=600 \times 10^{9} \mathrm{~N} / \mathrm{mm}^{2}$.
5. Define the following :
(a) Principal planes
(b) Principal stress
6. Calculate the torque required for a shaft of 60 mm diameter and 12 m long with an angle of twist being 3°. Take $G=80 \mathrm{kN} / \mathrm{mm}^{2}$.
7. A cylindrical compressed air drum 1.9 m in diameter has to sustain air pressure of $3 \mathrm{~N} / \mathrm{mm}^{2}$. If the safe stress of the material is $70 \mathrm{~N} / \mathrm{mm}^{2}$. Find the necessary thickness of cylinder wall.
8. If the actual length of the column is 6 m , determine the effective length with any three different end conditions.
9. State the middle third rule in dams.
10. Define a frame and list any two types of frames.

PART-B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. An I-section has a depth 300 mm and MI of $71.97 \times 10^{6} \mathrm{~mm}^{4}$. It is 6 m long and simply supported at its ends. Find the maximum fibres stress developed in the beam, when it is subjected to a UDL.
12. An I-section with rectangular ends, has the following dimensions :

Flanges	$: 200 \mathrm{~mm} \times 20 \mathrm{~mm}$
Web	$: 300 \mathrm{~mm} \times 10 \mathrm{~mm}$
Total depth	$: 340 \mathrm{~mm}$

Find the maximum shearing stress developed in the beam for a shear force of 50 kN . Also sketch the shear stress distribution across the section.
13. A cantilever beam $A B$ of span 4 m which is fixed at A and propped at B, carries a point load of 10 kN at its mid span. Find the reaction at prop and draw SFD and BMD.
14. Calculate the maximum slope and deflection of a simply supported beam carrying a UDL of $30 \mathrm{kN} / \mathrm{m}$ over its entire span of 6 m using Mohr's theorem. Take $E=210 \mathrm{kN} / \mathrm{mm}^{2}$ and $I=360 \times 10^{6} \mathrm{~mm}^{4}$.
15. A hollow cast iron column of 200 mm external diameter, 20 mm thickness is 4.5 m long is used as a strut with both ends fixed. Calculate the ratio of Euler's to Rankine's safe loads using a factor of safety 4. Given : $E=100 \mathrm{kN} / \mathrm{mm}^{2}$, $f_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$ and $a=1 / 1600$.
16. In a compression test for a 16 mm dia pin-ended strut, the following results are obtained :

Length	Rankine's Crippling Load
200 mm	35 kN
500 mm	20 kN

From these observations, calculate two Rankine's constants.
17. A concrete dam of trapezoidal section 16 m high and 4 m wide at top and 8 m wide at bottom. The water face is vertical and retains water up to 14 m . Check the stability of the dam for overturning, sliding and tensile stress at the base, if the coefficient of friction of the dam material and soil is $0 \cdot 7$. Specific weight of concrete is $24 \mathrm{kN} / \mathrm{mm}^{3}$ and specific weight of water is $10 \mathrm{kN} / \mathrm{mm}^{3}$.
18. Determine the forces in the members $A B, A C$ and $B C$ of truss shown in below figure (1) by method of joints.

