BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2018
 DCE-THIRD SEMESTER EXAMINATION

HYDRAULICS
Time : 3 hours]
[Total Marks : 80

PART—A

$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the terms viscosity, capillarity and surface tension.
2. What is manometer? Writethe different types of manometers.
3. Write the diffrence between laminar flow and turbulent flow with an example.
4. What is vena-contracta? State the various hydraulic co-efficient.
5. Find the discharge over a rectangular notch having width 2 m and a constant head of 30 cm . Assume $\mathrm{C}_{\mathrm{d}}=0.62$.
6. Define weir and classify according to the shape of crest.
7. Define Reynolds' number. How it is useful in determining the type of flow?
8. State Chezy's formula and Manning's formula and name the terms.
9. Define turbine and classify according to the direction of flow of water through runner.
10. State the component parts of a hydroelectric power plant.

PART-B

$$
10 \times 5=50
$$

Instructions: (1) Answer any five questions.
(2) Each questions carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
11. A circular plate 3 m in diameter is immersed in water with its greatest and lowest depths below the water surface being 2 m and 1 m respectively. Find the total pressure and depth of centre of pressure.
12. The diameter of a pipe changes gradually from 150 mm at point A to 100 mm at point B , which are situated at 20 m and 16 m respectively above the datum. Determine the pressure at B, if the pressure at A is $0.2 \mathrm{~N} / \mathrm{mm}^{2}$ and velocity of flow at A is $1.1 \mathrm{~m} / \mathrm{sec}$. Neglect the losses between A and B.
13. (a) Define co-efficient of contraction and decuce the relation between the three hydraulic co-efficient.
(b) An internal mouthpiece of diameter 60 mm is discharged water under a constant head of 9 m . Find the discharge in lit/sec, if the mouthpiece is (i) running free, (ii) running full.
14. Water flows over a rectangular notch of 1 m length over a depth of 15 cm . If the sam e quantity of water passing through a right angel triangular notch, find the depth of water through the notch. Take C_{C} values for rectangular notch and trangular notch as 0.62 and 0.59 respe ctovely.
15. Water flows through a pipe 250 cm diameter, 80 m long with a velocity of $3.5 \mathrm{~m} / \mathrm{sec}$. Find the losses in friction by using (a) Darcy's formula, (b) Chezy's formula. Assume Chezy's constant as 55.
16. A main pipe divides into two parallel pipes of 0.8 m and 0.5 m diameter with equal lengths. Parallal pipes meet again at the lower end. Find the discharge in each parallal pipe, if discharge in main pipe is 2.5 cumec. The Co-efficient of friction for each parallal pipe is same.
17. (a) Derive the condition for a rectangular channel section to be most economical.
(b) A rectangular channel having most economical section is 6 m wides. Find the discharge, if the bed slope is 1 in 1200. Assume C as 50 .
18. List any ten differences between impulse turbine and reaction turbine.

