c16-c-403

6426

BOARD DIPLOMA EXAMINATION, (C-16)

SEPTEMBER/OCTOBER-2020

DCE-FOURTH SEMESTER EXAMINATION

QUANTITY SURVEYING

Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. What is the necessity of specifications?
2. State the difference between detailed estimate and abstract estimate.
3. The internal dimensions of a room are $6.25 \mathrm{~m} \times 4.25 \mathrm{~m}$. Find the quantity of sand filling in the basement. The height and thickness of basement are 750 mm and 450 mm respectively. The wall thickness of room is 230 mm .
4. From the simple truss shown in Fig. 1, find the steel required for the following :

Fig. 1
(a) Principal rafter $A B$ @ $0 \cdot 108 \mathrm{kN} / \mathrm{m}$
(b) Tie $A D @ 0.054 \mathrm{kN} / \mathrm{m}$
5. Calculate the quantities of ingredients for $10 \mathrm{cu} . \mathrm{m}$ of $\mathrm{CC}(1: 2: 4)$ proportion.
6. The size of the RCC beam is $230 \mathrm{~mm} \times 500 \mathrm{~mm}$ with all covers 25 mm . Calculate the length of the stirrup of 8 mm dia.
7. Find the lead and lift of the following from Fig. 2 :

Fig. 2
8. Calculate the quantity of gravel to be collected for granular shoulders on either side of WBM road having length 800 m . The width of shoulder is 1.0 m . The compacted thickness 100 mm (loose thickness 120 mm).
9. Define the following :
(a) Scrap value
(b) Depreciation
10. State any three types of outgoings to be considered during fixation of rent.

PART-B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. From Fig. 3, calculate the quantities of the following items of work:

Fig. 3
(a) RR masonry in $\mathrm{CM}(1: 6)$ for footing
(b) RCC roof slab ($1: 2: 4$) 120 mm thick
(c) Flooring with polished stones
12. From Fig. 4, calculate the quantities of the following items of work :

Fig. 4
(a) Earthwork excavation for foundation
(b) Brick masonry in $\mathrm{CM}(1: 6)$ for footing and basement
(c) RCC M15 grade for roof slab and lintels
13. Prepare a data sheet and calculate the cost of the items given below :
(a) Cement concrete (1:4:8) using 40 mm HBG metal-1 m^{3}
(b) RR masonry in $\mathrm{CM}(1: 6)-1 \mathrm{~m}^{3}$

Materials and labour required for :

Cement concrete ($1: 4: 8)-1 \mathrm{~m}^{3} \quad$ RR masonry in CM $(1: 6)-1 \mathrm{~m}^{3}$
$0.92 \mathrm{~m}^{3}$ _HBG metal $1 \cdot 10 \mathrm{~m}^{3}$-Rough stone
$0.46 \mathrm{~m}^{3}$ —Sand
$0.34 \mathrm{~m}^{3}-\mathrm{CM}(1: 6)$
$0.115 \mathrm{~m}^{3}$ —Cement
1.80 nos.-Mason
$0 \cdot 20$ nos.-Mason
$2 \cdot 80$ nos.-Mazdoors
3.20 nos.-Mazdoors

LS sundries
LS sundries
Lead statement of materials :

Sl. No.	Materials	Rate (₹)	Per	Lead	Conveyance charges
1	40 mm size HBG metal	650	$1 \mathrm{~m}^{3}$	10 km	$₹ 12$ per 1 km
2	Sand	400	$1 \mathrm{~m}^{3}$	8 km	$₹ 12$ per 1 km
3	Rough stone	210	$1 \mathrm{~m}^{3}$	5 km	$₹ 9$ per 1 km
4	Cement	6,000	1 ton	At site	

Labour charges per day :

1. Mason I class $=₹ 420$
2. Mason II class $=₹ 380$
3. Mazdoor $=₹ 350$
4. Hand mixing charges for $C M$ per $\mathrm{m}^{3}=₹ 40$
5. Prepare a data sheet and calculate the cost of the items given below :
(a) Flooring with 25 mm thick polished Shahabad stone of I quality of size not exceeding $400 \mathrm{~mm} \times 40 \mathrm{~mm}$, laid over set $\mathrm{CM}(1: 10)$ 16 mm thick base coat-10 sq.m
(b) Painting with white cement paint I quality two coats to walls after surface is thoroughly cleaned including cost and conveyance of materials to site, etc. -10 sq.m

Materials and labour required for :

25 mm thick polished
Shahabad stone-10 sq.m
$10 \cdot 10$ sq.m—Polished stone
$0 \cdot 12$ cu.m—CM (1:10)
0.96 nos.-Mason I class
$2 \cdot 24$ nos.-Mason II class
$2 \cdot 20$ nos.-Man mazdoors
$1 \cdot 10$ nos.-Women mazdoors

Painting with cement paint-10 sq.m 3.5 kg —White cement paint
$0 \cdot 15$ nos.-Mason I class
0.35 nos.-Mason II class
0.50 nos.-Man mazdoors
1.00 nos.-Women mazdoors

LS sundries

LS sundries

Lead statement of materials :

Sl. No.	Materials	Rate $(₹)$	Per	Lead	Conveyance charges
1	Polished stone	1,650	1 sq.m	8 km	$₹ 10$ per 10 sq.m
2	Sand	250	$1 \mathrm{~m}^{3}$	20 km	$₹ 160$ for $20 \mathrm{~km} / 1 \mathrm{cu} . \mathrm{m}$
3	Cement	3,400	MT	4 km	$₹ 3$ per bag
4	White cement paint	15	kg	At site	

Labour charges per day :

1. Mason I class $=₹ 160$
2. Mason II class $=₹ 140$
3. Man mazdoor $=₹ 110$
4. Woman mazdoor $=₹ 110$
5. Hand mixing charges for CM per $\mathrm{m}^{3}=₹ 20$
6. A road in embankment has the following data:

Chainage (in m)	0	30	60	90	120
$R L$ of ground (in m)	$30 \cdot 80$	$31 \cdot 25$	$31 \cdot 85$	$32 \cdot 25$	33.00

Formation level at chainage zero is 33.00 and having a rising gradient of 1 in 120. Top width of formation is 10 m and side slope $2 H: 1 \mathrm{~V}$. Assuming that the transverse slope of the ground is in level, calculate the volume of earth by-
(a) trapezoidal formula;
(b) prismoidal formula.
16. Prepare the detailed estimate for the cement road of 1.5 km length for the following items of work as shown in Fig. 5 :

Fig. 5
(a) Wearing coat of CC 1:2:4 with 20 mm size HBG metal 100 mm thick
(b) Base coarse of CC 1:4:8 with 40 mm size HBG metal 150 mm thick
(c) Spreading of 50 mm size of boulders of 150 mm thick
17. Calculate the following quantities for an overhead tank as shown in Fig. 6 :

Fig. 6
(a) Earthwork excavation for column foundations
(b) $\operatorname{RCC}(1: 2: 4)$ for cover slab, bottom slab and side walls
18. A Hero Honda Splender Plus was purchased for $₹ 52,000$ in 2004. The salvage value of the Splender Plus is $₹ 26,000$ in 2009. Calculate the depreciation for each year by constant percentage method.

