6429

BOARD DIPLOMA EXAMINATION, (C-16)
JUNE/JULY—2022
DCE - FOURTH SEMESTER EXAMINATION
CIVIL ENGINEERING DRAWING - II
Time : 3 hours]
[Total Marks : 60

PART—A
$4 \times 5=20$

Instructions: (1) Answer all questions.
(2) Each question carries four marks.
(3) PART-A may be drawn not to scale.
(4) Assume suitable data, if necessary.

1. State any four guiding principles for position of the beams.
2. Mark the position of columns in the given diagram and name them as per "grid reference scheme".

$\begin{gathered} \text { ROOM } 1 \\ 3.60 \bigcirc 8.60 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { ROOM } 1 \\ 3 \cdot 30 \bigcirc 3 \cdot 60 \mathrm{~m} \end{gathered}$
$\begin{gathered} \text { ROOM } 1 \\ 3.60 \bigcirc 8.00 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { ROOM } 1 \\ 3 \cdot 30 \bigcirc 3 \cdot 00 \mathrm{~m} \end{gathered}$

3. Prepare a bai*bending schedule and estimate the quantity of steel for the lintel with the following data:

Clear span $\quad=1500 \mathrm{~mm}$
Size of the lintel $=230 \times 230 \mathrm{~mm}$
Bearing on either side $\quad=150 \mathrm{~mm}$
Main bars in tension zone $=3$ nos. of 12 mm dia. (all straight bars)
Hanger bars $\quad=2$ nos. of 10 mm dia.
Stirrups 6mm dia. 2-legged bars @ 200 mm c/c
All cover provided $=20 \mathrm{~mm}$ each
Weight of \#12 $=0.89 \mathrm{~kg} / \mathrm{m}$
Weight of \#10 $\quad=0.62 \mathrm{~kg} / \mathrm{m}$
Weight of \#6 $\quad=0.22 \mathrm{~kg} / \mathrm{m}$
4. Draw the cross section of the square column footing with the following specifications:
Size of column $=300 \times 300 \mathrm{~mm}$
Size of footing $\quad=1500 \times 1500 \mathrm{~mm}$
Thickness of CC Bed $\quad=150 \mathrm{~mm}$
Thickness of footing at free end $=300 \mathrm{~mm}$
Tapered portion height $=150 \mathrm{~mm}$
All covers $=50 \mathrm{~mm}$
Reinforcement:
In footing : \#12mm @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in both directions.
In columns : 8 nos. of 16 mm dia. with lateral ties of 8 mm dia. at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
5. Show how torsion reinforcement is provided in two-way slabs with corners held down assuming all the four edges are discontinuous.

* PART—B

Instructions: (1) Answer all questions.
(2) Each question carries twenty marks.
(3) Draw all questions to scale.
(4) Assume suitable data, if necessary.
6. A singly reinforced rectangular beam of width 230 mm and gross depth 450 mm is simply supported over a clear span of 4000 mm . Bearing on each side is 230 mm . It is reinforced with 4 nos. of 16 mm dia. bars with a clear cover of 40 mm and 2 anchor bars of 12 mm dia. are provided.

Middle bars of tension reinforcement are cranked through 45° at a distance of 0.1 times the clear span from the face of the support. To resist shear 2-legged stirrups of 8 mm dia. @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ are provided. The end cover is 40 mm .

Draw the following views from the above specifications to suitable scale :
(a) Longitudinal section 10
(b) Cross-section at the middle span 5
(c) Cross-section at the end span 5
7. Draw the longitudinal section of staircase spanning longitudinally with the following specifications.

SPECIFICATIONS :
Size of the staircase room $=4700 \times 2100 \mathrm{~mm}$
Height of the floor $=3300 \mathrm{~mm}$
Tread $(T) \quad=270 \mathrm{~mm}$
Rise $(R) \quad=150 \mathrm{~mm}$
Thickness of waist slab $=175 \mathrm{~mm}$
Bearing on walls $\quad=230 \mathrm{~mm}$
Projection into the basement $=300 \times 300 \mathrm{~mm}$

REINFORCEAENT DETAILING :
(a) Main reinforcement $=12 \mathrm{~mm}$ dia. at $100 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(b) Distribution steel $=8 \mathrm{~mm}$ dia. at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(c) Additional bars $\quad=12 \mathrm{~mm}$ bars at $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(at junction of landing slab with waist slab)
Bottom and end clear cover to steel $=25 \mathrm{~mm}$
Draw to a scale of $1: 25$

