BOARD DIPLOMA EXAMINATION, (C-16)

AUGUST/SEPTEMBER—2021
DCE - FOURTH SEMESTER EXAMINATION
CIVIL ENGINEERING DRAWING - II
Time : 3 hours]
[Total Marks : 60

PART—A
$4 \times 5=20$

Instructions: (1) Answer all questions.
(2) Each question carries four marks.
(3) Any missing data may be assumed suitably.

1. Redraw the figure given below and mark the columns and beams as per Grid Reference Scheme.

2. State any two guiding principles each for positioning of columns and beams in structural planning of buildings.
3. Draw the cross section of an isolated square column footing with the following specifications :

Column : $230 \times 230 \mathrm{~mm}$ with 4 nos. of 16 mm dia steel and lateral ties of 8 mm @ 150 mm c/c.

Footing : $1200 \times 1200 \mathrm{~mm}$ with 12 mm bars at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ both ways
Thickness of footing : 350 mm
Thickness of base course : 150 mm . Assume covers as 50 mm .
4. Prepare the bar bending schedule and estimate the quantity for the given reinforcement of the simply supported RCC beam with the following data :

Clear span of beam : 5000 mm , Width of beam : 230 mm , Overall depth of beam : 450 mm , Width of support : 230 mm (full bearing)

Main reinforcement : 20 mm bars 4 nos. (2 bars cranked at 700 mm from the face of support)

Hanger bars: 12 mm 2 nos.
Covers : Top and bottom : 25 mm End cover : 40 mm .
5. Prepare bar bending schedule and calculate the steel quantity for the one way slab with the following data :

Size of room $: 7000 \mathrm{~mm} \times 3000 \mathrm{~mm}$
Wall thickness : 300 mm
Slab thickness : 130 mm
Main reinforcement : $10 \mathrm{~mm} @ 125 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. All the bars are cranked on one side and cranks placed alternatively at a distance of 300 mm from the face of support.

Distribution Steel : $8 \mathrm{~mm} @ 150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
All covers are of 20 mm .

* PART—B

Instructions: (1) Answer all questions.
(2) Any missing data may be assumed suitably.
6. A room of clear dimensions $2.5 \mathrm{~m} \times 5.5 \mathrm{~m}$ is covered with an RCC slab of thickness 140 mm with bearings on either side 150 mm each. The thickness of the wall is 230 mm .

The main reinforcement consists of 10 mm dia bars at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ and distribution bars of 10 mm dia at $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. Each main bar is cranked at one side only and these bars are arranged in such a way that cranks come alternatively on both sides. The cranking distance may be taken as 0.15 times the clear span from each face of the wall. All covers may be taken as 20 mm .

Draw the following to a suitable scale :
(a) Bottom plan reinforcement
(b) Section along long span.
7. Draw the following views to a scale of $1: 25$ for the longitudinally spanned dog legged stair case whose specifications are given below.
$15+5=20$
(a) Longitudinal Section
(b) Plan of the stair case

Specifications :
(i) Size of the Stair case room : $2500 \times 4000 \mathrm{~mm}$
(ii) Height of the floor : 3600 mm
(iii) Tread : 270 mm
(iv) Rise : 150 mm
(v) Thickness of waist slab: 200 mm

(vi) Bearing *n the wall	$: 200 \mathrm{~mm}$
(vii) Thickness of wall	$: 300 \mathrm{~mm}$
(viii) Projection in to the basement	$: 300 \times 300 \mathrm{~mm}$
(ix) Width of stair case	$: 1200 \mathrm{~mm}$

Reinforcement :
Main bars: 12 mm dia bars at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ (alternate bars cranked at L/7 from bottom end)

Distribution bars : 10 mm at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Additional bars of 12 mm at $140 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ at the junction of landing and waist slab. Project these bars to a distance of 1000 mm from the junction point down wards parallel to the waist slab.

All covers may be assumed as 20 mm .

