Code: C16 CHPP/EE-103

6036

BOARD DIPLOMA EXAMINATION MARCH/APRIL - 2019

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING ENGINEERING PHYSICS FIRST YEAR EXAMINATION

Time: 3 Hours Total Marks: 80

PART - A $(3m \times 10 = 30m)$

Note 1:Answer all questions and each question carries 3 marks

2:Answers should be brief and straight to the point and shall not exceed 5 simple sentences

- 1. Define dimensionless quantities? Give two examples
- 2. A body is thrown with some velocity at an angle of 30° with the horizontal.

If its horizontal component is 100 m/s what is the actual velocity and its vertical component

- 3. A stone is projected upwards with a velocity of 9.8 m/s from the top of a tower and reaches the ground in 4s. Find height of the tower
- 4. The maximum acceleration and maximum velocity of a particle in SHM are 8 units and 4 units respectively. Find its frequency of oscillation
- 5. Give reasons on why $C_p > C_v$
- 6. Write any three effects of noise pollution
- 7. Write any three examples of viscosity
- 8. Write the formula for surface tension based on capillarity and name the physical quantities involved in the formula
- 9. A bar magnet of pole strength 60 Am has magnetic length 0.1 m. Find the magnetic moment
- 10. Write any three applications of optical fibers

www.manaresults.co.in

Page: 1 of 2

PART - B $(10m \times 5 = 50m)$

Note 1:Answer any five questions and each carries 10 marks

2:The answers should be comprehensive and the criteria for valuation is the content but not the length of the answer

11. a. Define vector product and write any two examples of vector product.	r 4M 6M
b. Write any six properties of vector product	
12. a) Define acceleration due to gravity and write the equations of motion a free for falling body.	ely 5M
b) Two similar stones are projected from the same point with sam velocities at angles 60° and 45°. Which stone has more horizont range? Explain	
13. a) Define friction.	2M
b) Derive the expression for the acceleration of a body sliding down smooth inclined plane.	
c) A body of mass 10 kg rests on a horizontal plane. If coefficien friction is 0.3, calculate the work done in dragging the body	at of 4M
through a distance of 20 m	
14. a) Define kinetic energy. Derive expression for kinetic energy.	7M
b) If the mass of a body is doubled and velocity is reduced to he how does its kinetic energy changes?	alf, 3M
15. a) Derive an expression for the acceleration of a particle execut	ing -
SHM.	- / IVI
b) The displacement of a particle in SHM is given by $y = 10 \sin(\frac{\pi}{2}t + \pi/3)$. Find its initial displacement and its	3M
displacement when $t = 1$ s.	
16. a) Derive ideal gas equation.	6M
* b) A gas occupies 1 litre of volume at temperature of 7 °C under to pressure of 700 mm of Hg. Find its volume at 27 °C	a 4M
temperature and 600 mm of Hg pressure.	
17 a) Explain the phenomenon of heats with a rest discuss	511
17. a) Explain the phenomenon of beats with a neat diagram.b) Write any five methods of controlling noise pollution	5M 5M
o, write any five methods of condoming hoise pondulon	2111
18. a) State and explain Kirchhoff's laws.	70.5
b) Three currents 1 mA, 3 mA and i ₃ mA are flowing towards the	
junction and two currents 2 mA and 5 mA are flowing away the junction. Find the value of current i ₃	e 3M