C16-EC/CHPC/PET-102

6028

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL-2017 DECE-FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I
Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.

1. Resolve

$$
\frac{1}{(x-8)(x+1)}
$$

into partial fractions.
2. If

$$
A=\left[\begin{array}{cc}
\sec \theta & \tan \theta \\
\tan \theta & \sec \theta
\end{array}\right]
$$

find $\operatorname{det} A$.
3. If

$$
A=\left[\begin{array}{rr}
2 & -4 \\
-5 & 3
\end{array}\right]
$$

find $A+A^{T}$.
4. Find the value of $\tan 75^{\circ}$.
[Contd...
5. Show that

$$
\frac{\sin 2 A}{1+\cos 2 A}=\tan A
$$

6. If $z=2+3 i$, then find $z+\bar{z}$ and $z \cdot \bar{z}$.
7. Find the distance between the parallel lines

$$
2 x+3 y+5=0 \text { and } 2 x+3 y+9=0
$$

8. Find the equation of the line passing through the points $(1,2)$ and $(-3,5)$.
9. Evaluate :

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{\sin 37 x}{\sin 11 x}
$$

10. Find $\frac{d y}{d x}$, if $y=3 \tan x-4 \log x-7 x^{2}$.

PART-B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
11. (a) If

$$
A=\left[\begin{array}{rrr}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{array}\right]
$$

then find adjoint of A.
(b) Solve the following equations by Cramer's rule :

$$
2 x-3 y+z=-1, x+4 y-2 z=3 \text { and } 4 x-y+3 z=11
$$

12. (a) If $\cos x+\cos y=\frac{3}{5}$ and $\cos x-\cos y=\frac{2}{7}$, then show that $21 \tan \left(\frac{x-y}{2}\right)+10 \cot \left(\frac{x+y}{2}\right)=0$.
(b) Show that

$$
\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\tan ^{-1}\left(\frac{6}{17}\right)
$$

13. (a) Solve $4 \sin ^{2} \theta-8 \cos \theta+1=0$.
(b) In a $\triangle A B C$, show that $\Sigma a \sin (B-C)=0$.
14. (a) Find the equation of the circle with $(1,2)$ and $(4,5)$ as end points of a diameter.
(b) Find the equation of the rectangular hyperbola whose focus is the point $(3,-4)$ and directrix is the line $x-y+5=0$.
15. (a) Find the derivative of $\cot \left(e^{x}+2 x\right)$ with respect to x.
(b) Differentiate $\tan ^{-1}(\log x)$ with respect to $\log \left(\tan ^{-1} x\right)$.
16. (a) Find $\frac{d^{2} y}{d x^{2}}$ if $x=a \cos ^{3} \theta$ and $y=b \sin ^{3} \theta$.
(b) Verify Euler's theorem for the function $z=a x^{2}+2 h x y+b y^{2}$.
17. (a) Find the equations of tangent and normal to the curve $y=3 x^{2}+2 x+5$ at the point $(2,-1)$.
(b) The volume of a sphere is increasing at the rate of $400 \mathrm{~cm}^{3} / \mathrm{sec}$. Find the rate of increase of its radius and its surface area at the instant when the radius of the sphere is 40 cm .
18. (a) The sum of two numbers is 24 . Find the numbers when the sum of their squares is minimum.
(b) The pressure p and volume v of a gas are connected by the relation $p v^{1.4}=$ constant. Find the percentage increase in p if v is decreased by 1%.
