

C16-EC/CHPC/PET-102

6028

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL—2018 DECE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 hours [Total Marks: 80

PART—A

3×10=30

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple steps.
- **1.** Resolve $\frac{1}{(x-3)(x-1)}$ into partial fractions.
- **2.** If $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ and $B = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$, then find AB.
- **3.** If $\begin{vmatrix} 1 & 2 \\ 3 & x \end{vmatrix}$ 0, then find x.
- **4.** If *A* is acute and $\cos A = \frac{3}{5}$, then find $\sin 2A$, $\cos 3A$ and $\tan 2A$.
- **5.** Find the modulus of 1 $i\sqrt{3}$ and also write its conjugate.
- **6.** If $A B \frac{1}{4}$, then show that $(1 \tan A)(1 \tan B) 2$.

/**6028** 1 [Contd...

- 7. Find the value of x if the slope of the line joining two points (2, 5)and (x, 3) is 2.
- **8.** Find the perpendicular distance from the point (2, 1) to the line $3x \ 4y \ 5 \ 0.$
- **10.** Find $\frac{dy}{dx}$, if $y = \sqrt{1 + \sin 2x}$.

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) If

then find $(AB)^T$.

(b) Solve the following equations by Cramer's rule:

$$x$$
 2 y z 1, 3 x y 2 z 5 and x y 3 z 0

12. (a) Show that

$$\frac{\sin 5A \quad \sin 3A}{\cos 3A \quad \cos 5A} \quad \cot 4A$$

(b) Show that

$$\tan^{-1}\frac{2}{3}$$
 $\tan^{-1}\frac{3}{4}$ $\cot^{-1}\frac{6}{17}$

/6028

[Contd...

- **13.** (a) Solve sin $\cos \sqrt{2}$.
 - (b) In a ABC, show that $(b \ c)\cos A \ a \ b \ c$.
- **14.** (a) Find the centre and radius of the circle $3x^2$ $3y^2$ 12x 6y 11 0.
 - (b) Find the centre, vertices, lengths of axes, length of Latera recta, eccentricity, foci and the equations of Latera recta and directrices of the ellipse $4x^2$ $9y^2$ 36.
- **15.** (a) Find the derivative of $\sin^{-1}(3x 4x^3)$, w.r.t. x.
 - (b) If $x = a \cos and y = b \sin a$, then find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- **16.** (a) If $u x^2 y^2 xy$, then find $\frac{u}{x}$, $\frac{u}{y}$, $\frac{^2u}{x y}$ and $\frac{^2u}{u x}$.
 - (b) If $y = \sqrt{x} = \sqrt{x} = \sqrt{x} = \sqrt{x}$ times, then find $\frac{dy}{dx}$.
- **17.** (a) Find the lengths of tangent, normal subtangent and subnormal for the curve $y x^3 3x 2$ at the point (0, 2).
 - (b) A particle is moving along a straight line according to the law $s 2t^3 3t^2 15t 18$ (t in sec). Find its velocity when its acceleration is zero.
- **18.** (a) Find the maximum and minimum values of $4x^3$ $18x^2$ 24x 7.
 - (b) The radius of a spherical balloon is increased by 1%. Find the approximate percentage increase in its volume.

* * *

/6028 3 AA8(A)—PDF WWW.MANARESULTS.CO.IN