BOARD DIPLOMA EXAMINATION
 MARCH/APRIL - 2019 COMMON FIRST YEAR EXAMINATION
 ENGINEERING MATHEMATICS - I
 6028

Time: 3Hours
Max. Marks : 80
$P A R T-A$
$10 \times 3=30$

Instructions:

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not exceed FIVE simple sentences
(1) Resolve $\frac{4}{(x-2)(x-5)}$ into Partial Fractions
(2) If $A=\left[\begin{array}{ll}1 & 3 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$ then find $A B$ and $B A$
(3) If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 3 & 4 \\ 5 & -6 & x\end{array}\right]$ and $\operatorname{det}(A)=45$ then find the value of x
(4) Prove that $\frac{\cos (A-B)}{\cos A \cdot \sin B}=\tan A+\cot B$
(5) Prove that $\sin 10^{\circ} \cdot \sin 50^{\circ} \cdot \sin 70^{\circ}=\frac{\sqrt{3}}{8}$
(6) Find the real and imaginary of parts of the complex number $(3-4 i)(5+7 i)$
(7) Find the value of x if the slope of the line joining the points $(1,-2)$ and $(-2, x)$ is $-\frac{5}{3}$
(8) Find the equation of the straight line passing through the point $(3,-4)$ and perpendicular to the line $5 x+3 y-1=0$
(9) Evaluate $\lim _{x \rightarrow 1}\left(\frac{x^{3}+3 x+2}{x^{2}+5 x+4}\right)$
(10) Find the derivative of $5^{x} e^{x}$ with respect to x

$$
P A R T-B
$$

$$
5 \times 10=50
$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
(11) (a) Solve the equations $x+-y+z=2,2 x+3 y-4 z=-4$ and $3 x+y+z=8$ by Crammer's Rule
(b) Find the adjoint of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]$
(a) If $\frac{\sin (\alpha+\beta)}{\sin (\alpha-\beta)}=\frac{a+b}{a-b}$ then show that $b \tan \alpha=a \tan \beta$
(b) Prove that $\operatorname{Tan}^{-1}\left(\frac{2}{13}\right)+\operatorname{Tan}^{-1}\left(\frac{5}{7}\right)=\operatorname{Tan}^{-1}\left(\frac{79}{81}\right)$
(13) (a) Solve the equation $(2 \cos \theta-1)(\cos \theta-1)=0$
(b) In a $\Delta^{l e} A B C$ prove that $\sum\left(\frac{a^{2}-b^{2}}{c^{2}}\right) \sin 2 C=0$
(14) (a) Find the equation of the Circle whose center is at the point $(-3,2)$ and radius is 4 units
(b) Find the vertex, focus equation of axis, latus rectum, directrix and length of latus rectum of the Parabola $x^{2}=4 y$
(15) (a) If $x=5(\theta-\sin \theta), y=5(1-\cos \theta)$ then find $\frac{d y}{d x}$
(b) If $y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+\ldots \infty}}}$ then show that $\frac{d y}{d x}=\frac{\sec ^{2} x}{2 y-1}$
(16) (a) Find $\frac{d^{2} y}{d x^{2}}$, if $y=a \cos ^{3} \theta, x=b \sin ^{3} \theta$
(b) If $u(x, y)=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$
(17) (a) Find the lengths of tangent, normal, sub-tangent and sub-normal to the curve $y=2 x^{2}-4 x+5$ at the point $(3,-1)$
(b) The volume of a sphere is increasing at the rate of $0.3 \mathrm{cc} / \mathrm{sec}$. Find the rate of increase of its surface area and radius at the instant when the radius of the sphere is 20 cm
(18) (a) Find the maximum and minimum values of $f(x)=x^{3}-4 x^{2}+5 x$
(b) Each side of a cube is increased by 0.2%. Find the approximate percentage increase in its volume. Also find the approximate percentage increase in its surface area

