BOARD DIPLOMA EXAMINATION JUNE - 2019
 COMMON FIRST YEAR EXAMINATION
 ENGINEERING MATHEMATICS - I
 6028

Time: 3Hours
Max. Marks : 80
$P A R T-A$
$10 \times 3=30$

Instructions:

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not exceed FIVE simple sentences
(1) Resolve $\frac{3 x-1}{(x-2)(x-3)}$ into Partial Fractions
(2) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$ then find $A^{2}-3 A+2 I$ where I is a unit matrix of order 2
$\mathbf{I}_{a} \quad h \quad g$ l
(3) Show that $\begin{array}{lll}\mathbf{I}_{h} & b & f \mathbf{l}=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2} \\ \mathbf{I}_{g} & f & c^{\text {I }}\end{array}$
(4) Prove that $\frac{\sin (A+B)}{\sin A \cdot \sin B}=\cot A+\cot B$
(5) Prove that $\frac{1-\cos \theta+\sin \theta}{1+\cos \theta+\sin \theta}=\tan \left(\frac{\theta}{2}\right)$
(6) Find the real and imaginary of parts of the complex number $\frac{1-i}{1+i}$
(7) Find the equation of the straight line passing through the points $\left(\frac{3}{5}, 4\right)$ and $\left(3, \frac{-1}{3}\right)$
(8) Find the equation of the straight line passing through the point $(3,-5)$ and parallel to the line $x-7 y+15=0$
(9) Evaluate $\lim _{x \rightarrow 0}\left(\frac{x}{1-\sqrt{1-x}}\right)$
(10) Find the derivative of $a^{x}+x^{2} \sec x$ with respect to x

$$
P A R T-B
$$

$$
5 \times 10=50
$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
(11) Solve the equations $2 x-y+3 z=9, x+y+z=6$ and $x-y+z=2$ using matrix inversion method
(12) (a) Prove that $\sin 50^{\circ}-\sin 70^{\circ}+\sin 10^{\circ}=0$
(b) Prove that $\operatorname{Cos}^{-1}\left(\frac{4}{5}\right)+\operatorname{Cos}^{-1}\left(\frac{12}{13}\right)=\operatorname{Cos}^{-1}\left(\frac{33}{65}\right)$
(13) (a) Solve the equation $(2 \cos \theta-1)(\cos \theta-1)=0$
(b) In a $\Delta^{l e} A B C$ prove that $\sum \sin A=\frac{s}{R}$
(14) (a) Find the equation of the Circle with center at the point $(2,3)$ and passing through the point $(-2,-1)$
(b) Find the center, vertices, eccentricity, foci and length of latus rectum of the Ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$
(15) (a) If $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ then find $\frac{d y}{d x}$
(b) If $y=\sqrt{\sec x+\sqrt{\sec x+\sqrt{\sec x+\ldots \infty}} \text { then find } \frac{d y}{d x}}$
(16) (a) If $y=\sin \sqrt{x}$ then show that $4 x y_{2}+2 y_{1}+y=0$
(b) If $u(x, y)=x^{3}+y^{3}+3 x^{2} y$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3 u$
(17) (a) Find the equations of tangent and normal to the curve $y^{2}=\frac{x^{3}}{2 a-x}$ at the point (a, a)
(b) Each side of a square increases at the rate of $0.33 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area of the square increases when the side is 12 cm . Also find the rate of increase in its perimeter
(18) (a) A wire of length 20 cm is cut into two parts which are bent in the form of a square and circle. Find the least value of the sum of the areas so formed
(b) The radius of a spherical balloon is increased by 1%. Find the approximate percentage increase in its volume. Also find the approximate percentage increase in its surface area

