

C16-EC/CHPC/PET-102

6028

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2018

DECE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Resolve $\frac{x}{(x-2)(x-7)}$ into partial fractions.
- **2.** If $A = \begin{pmatrix} 9 & 1 \\ 4 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 5 \\ 6 & 11 \end{pmatrix}$, then find X such that 3A = 5B = 4X = 0.
- 3. If $A = \begin{cases} \sec & \tan \\ \tan & \sec \end{cases}$, find det A.
- **4.** Prove that $\sin^2 45 \sin^2 15 \frac{\sqrt{3}}{4}$.
- **5.** If $x = \frac{1}{x} = 2\cos x$, then show that $x^2 = \frac{1}{x^2} = 2\cos 2$.

/6028 1 [Contd...

- **6.** Express $\sqrt{3}$ *i* in modulus amplitude form.
- **7.** Find the angle between the lines $2x \ y \ 3 \ 0$ and $x \ y \ 2 \ 0$.
- **8.** Find the equation of the line passing through the points (1, -2) and (-2, 3).
- **9.** Evaluate $\lim_{0} \frac{1 \cos 2}{\sin 2}$.
- **10.** Find $\frac{dy}{dx}$ if $y = \sqrt{x} = \sec x = \log x$.

PART—B

10×5=50

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) All dimensions are in mm.
- 1 2 3 11. (a) If A 2 5 6 is a symmetric matrix, then find x. 3 x 7
 - (b) Solve the following equations by using Cramer's rule : $x \ y \ z \ 3, x \ 2y \ 3z \ 4$ and $x \ 4y \ 9z \ 6$
- **12.** (a) Show that $\frac{\sin^2 A \sin^2 B}{\sin A \cos A \sin B \cos B} \quad \tan A \quad B.$
 - (b) If $\cos^{-1}x \cos^{-1}y \cos^{-1}z$, then show that $x^2 y^2 z^2 2xyz$ 1.
- **13.** (a) Solve cos $\sqrt{3} \sin 1$.
 - (b) In a ABC if $\frac{a}{\cos A}$ $\frac{b}{\cos B}$ then show that ABC is isosceles.

/6028

2

[Contd...

- **14.** (a) Find the center and radius of the circle $3x^2$ $3y^2$ 5x 6y 4 0.
 - (b) Find the center, lengths of axes, vertices, eccentricity, foci, directrices, latera recta and length of latus rectum of the ellipse represented by $4x^2$ $9y^2$ 36.
- **15.** (a) Find $\frac{dy}{dx}$, if $y = x^{\tan x}$.
 - (b) If $y = ae^x = be^{-x}$, then show that $\frac{d^2y}{dx^2} = y = 0$.
- **16.** (a) If $x = a(\sin x)$, and $y = a + 1 \cos x$ find $\frac{dy}{dx}$
 - (b) If $u \tan^{-1} \frac{x^3 + y^3}{x + y}$, prove that $x \frac{u}{x} + y \frac{u}{y} = \sin 2u$.
- **17.** (a) Find the lengths of the tangent, normal, subtangent and subnormal to the curve $y x^2 3x 2$ at (2, 3).
 - (b) The volume of a cube increases at a rate of 0.3 cm³ / min at the instant when the edge is 20 cm long. Find the rate at which the surface area changes.
- **18.** (a) The sum of two numbers is 24. Find the numbers when the sum of their squares is a minimum.
 - (b) Find the approximate value of $\sqrt[3]{127}$.

* * *

/6028 3 AA8