6029

BOARD DIPLOMA EXAMINATION JUNE - 2019

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING ENGINEERING PHYSICS FIRST YEAR EXAMINATION

Time: 3 Hours Total Marks: 80

PART - A $(3m \times 10 = 30m)$

Note 1:Answer all questions and each question carries 3 marks

2:Answers should be brief and straight to the point and shall not exceed 5 simple sentences

- 1. Write any three advantages of S.I unit system
- 2. A body is thrown with some velocity at an angle of 60° with the horizontal. If its horizontal component is 50 m/s what is the actual velocity and its vertical component
- 3. A body is allowed to fall freely from a height 490 m. Find the time taken to reach the ground
- 4. The displacement of a particle executing SHM is given as $y = 5 \sin(2\pi t + \pi/6)$. Find its time period, frequency and amplitude
- 5. What is perfect gas. Write the perfect gas equation
- 6. Write any three differences between musical sound and noise.
- 7. Define strain. State the Hooke's law
- 8. Define capillarity. Give one example
- 9. State Kirchoff's current law. Is this law applicable for loops or junctions?
- * 10. Explain the phenomenon of total internal reflection with a neat diagram

$\underline{PART - B} \qquad (10m \times 5 = 50m)$

Note 1:Answer any five questions and each carries 10 marks

2:The answers should be comprehensive and the criteria for valuation is the content but not the length of the answer

- 11. a. Define scalar product and write any two examples of scalar product
 - b. Write any six properties of scalar product

6M

4M

www.manaresults.co.in

Page: 1 of 2

12.a) Derive expression for maximum height and horizontal range of a projectile in oblique projection.	6M
b) A body is projected obliquely with an initial velocity of 19.6 m/s at an angle of 30° with the horizontal. Find the maximum height reached and horizontal range	4M
13. a) Define friction.	2M
b) Derive the expression for the acceleration of a body sliding down on a smooth inclined plane.	4M
c) A body of mass 10 kg rests on a horizontal plane. If the coefficient of friction is 0.3, calculate the work done in dragging the body through a distance of 20 m	4M
14. a) Define potential energy and kinetic energy.	4M
b) State and prove work energy theorem	6M
15. a) Derive an expression to find the time period of a simple pendulum.	7M
b) The time period of simple pendulum is 2 seconds. If its length is doubled, what is the new time period	3M
16. a) State first and second laws of thermodynamics.	3M
b) Derive a relationship between C _p and C _v	7M
17.a) Define Doppler effect and write any Three applications of Doppler effect	5M
b) Define reverberation time. Write Sabine's formula and name the physical quantities involved	5M
18. a) Define magnetic induction field strength. State its SI unit.	4M
b) Derive an expression for moment of couple acting on a bar magnet placed in a uniform magnetic field	6M