

CI6-EC-301/C16-CHPC-301/C16-PCT-301

6232

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2017 DECE-THIRD SEMESTER EXAMINATION

ENGINEERING MACHEMATICS-II

Time: 3 hours [Total Marks: 100

PART—A

 $3 \times 10 = 40$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. Evalute, $\frac{1}{1 + \sin x} dx$
- 2. Evaluate, $\frac{m_e \tan^{-1} x}{1 + x^2} dx$
- **3.** Evaluate, $\int_{0}^{1} x^{2} \cdot 1 \cdot dx$
- **4.** Find the mean value of $y = \sin x$ over 0,
- 5. Find the Laplace Transform of 3.sin 4t-4cos 3t.

/6232 1 [Contd... www.ManaResults.co.in

6. Find
$$L^{-1} \frac{2s}{s^2} \frac{5}{4}$$

- **7.** Define the Fourier series of f(x) in the interval c, c 2
- **8.** Find the differential equation to the family of curves y = A. $\cos 3x + B \sin 3x$ where A, B are arbitrary constants.

9. Solve,
$$\frac{dy}{dx} = \sqrt{\frac{1 + y^2}{1 + x^2}}$$

10. Solve,
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} = 13y = 0$$

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Evaluate, $\cos 3x \cdot \sin 2x \cdot dx$

(b) Evaluate,
$$\frac{dx}{5 + 4\cos x}$$

12. (a) Evaluate, $x^3 \cdot \log x \cdot dx$

(b) Evaluate,
$$\int_{0}^{2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} - \sqrt{\cos x}} dx$$

- 13. (a) Find the area enclosed by the ellipse $16x^2$ $25y^2$ 400
 - (b) Find the volume of the sphere of radius 'r' using the method of integration.

- **14.** (a) Find $L^{e^{2t}}$. $t \sin 3t$
 - (b) Obtain the value of $\frac{6}{0} = \frac{1}{1 x^2}$. dx using Simpson's rule by taking n = 6.
- **15.** (a) Find $L \frac{1 \cos 2t}{t}$
 - (b) Find $L^{-1} \log \frac{s-3}{s-2}$
- **16.** Expland $f(x) = x^2$ as Fourier series in l(x) = l.

Hence, deduce that $\frac{2}{12} = \frac{1}{1^2} = \frac{1}{2^2} = \frac{1}{3^2} = \dots$

- **17.** (a) Solve, $1 x^2 \frac{dy}{dx} 2xy x^3$.
 - (b) Solve, $D^2 + 1 y \cosh 2x$.
- **18.** (a) Solve, D^2 3D 2 y $\cos 3x$.
 - (b) Solve, D^2 2D 1 y 2 x^2 .

* * *