6232

BOARD DIPLOMA EXAMINATIONS

COMMON-THIRD SEMESTER **OCT/NOV-2019**

ENGINEERING MATHEMATICS - II

Time: 3 hours Max. Marks: 80

PART – A

 $3 \times 10 = 30$

- Instructions: 1. Answer all questions.
 - 2. Each question carries Three Marks.
 - 3. Answer should be brief and straight to the point and should not exceed Five simple sentences.
- Evaluate $\int (x + \frac{1}{x})^2 dx$
- Evaluate $\int \sin^2 x \ dx$ 2.
- Evaluate $\int_{-2}^{2} (x^{99} + x^2 + 5) dx$
- Find the mean value of $f(t) = x^2 3x + 2$ between the values of x where the expression vanishes.
- Find $L(\cos^2 t)$
- Find $L^{-1} \{ \frac{1}{s(s-3)} \}$
- 7. Obtain the value of a_0 in the half range cosine series expansion of f(x) = 3x + 1 in 0 < x < 2

[Cont..,

- Find the order and degree of the Differential Equation $\log \left(\frac{dy}{dx}\right) = ax + by$ where a and b are constants.
- 9. Solve $\frac{dy}{dx} = e^{2x+y}$
- 10. Solve $\frac{d^2y}{dx^2} + y = 0$

PART - B

 $5 \times 10 = 50$

- **Instructions**: 1. Answer any **Five** questions
 - 2. Each question carries TEN Marks.
 - 3. Answer should be comprehensive and a criterion for valuation is the content but not the length of the answer.
- 11. a) Evaluate $\int \sin^7 x \cos^5 x \, dx$
 - b) Evaluate $\int \left(\frac{1}{5-3\cos x} \right) dx$
- 12. a) Evaluate $\int tan^{-1} x dx$
 - b) Evaluate $\int_0^1 \frac{\cos^{-1} x}{\sqrt{1-x^2}} dx$
- (a) Find the area bounded by the curve $y = x^2 + 3x$ and x-axis
 - (b) Find the volume generated by revolving the Ellipse $\frac{x^2}{\alpha} + \frac{y^2}{\lambda} = 1$ about its minor axis.

[Cont..,

- 14. a) Calculate the approximate value of π from $\int_0^1 \frac{1}{1+x^2} dx$ using Trapezoidal's rule by dividing [0,1] into 4 equal parts.
 - b) Find L{t cos 2t}
- 15. a) Find L⁻¹ $\{\frac{s-3}{s^2-6s+5}\}$
 - b) using Convolution theorem Find L⁻¹ $\{\frac{1}{s(s^2+1)}\}$
- ^{16.} Find the Fourier series for $f(x) = e^x$ in $0 < x < 2\pi$
- 17. (a)Solve $\frac{dy}{dx} = \sin(x+y)$
 - (b) solve $\frac{dy}{dx} + y \sec x = \tan x$
- Solve the following differential equations

a)
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = 0$$

b)
$$(D^2 - 1)y = \cosh 2x$$
, where $D = \frac{d}{dx}$