3

[ Contd...



10.

/6234

# 6234

# BOARD DIPLOMA EXAMINATION, (C-16)

## MARCH/APRIL - 2021

#### **DECE - THIRD SEMESTER EXAMINATION**

## DIGITAL ELECTRONICS

Time: 3 hours [ Total Marks: 80

#### PART—A

**Instructions**: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. Convert decimal number 124.6 into Binary and Hexadecimal. 11/2+11/2 2. Subtract 101010 from 110111 using 2's complement method. 3 Write the Excess-3 code and Gray code for decimal digit 9. 3. 11/2+11/2 4. Define propagation delay and fan-out of digital ICs.  $1\frac{1}{2} + 1\frac{1}{2}$ 5. List the applications of multiplexer. 3 6. Draw the logic circuit of half adder using NOR gates only. 3 7. Differentiate between level clocking and edge triggering. 3 8. Draw NOR latch with truth table. 3 9. List the applications of flip-flops. 3

www.manaresults.co.in

1

Write differences between EEPROM and UVEPROM.

|                |                                                                                  | TAKI—b                                                                                                                 | ×3-30  |
|----------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------|
| Instructions : |                                                                                  | (1) Answer any five questions.                                                                                         |        |
|                |                                                                                  | (2) Each question carries ten marks.                                                                                   |        |
|                |                                                                                  | (3) Answers should be comprehensive and criterion valuation is the content but not the length of the answ              |        |
| 11.            | ` '                                                                              | Explain working of AND, NOR and EX-OR gates with trut ables.                                                           | h<br>6 |
|                | (b) N                                                                            | Minimize $A\overline{B}C + \overline{A}BC + A\overline{B}\overline{C} + \overline{A}B\overline{C}$ using Karnaugh map. | 4      |
| 12.            | (a) St                                                                           | ate De-Morgan's theorems.                                                                                              | 4      |
|                | <i>(b)</i> Re                                                                    | ealize AND, OR and NOT gates using NOR gates.                                                                          | 6      |
| 13.            | Explain the working of open collector TTL NAND gate with circuit diagram.        |                                                                                                                        |        |
| 14.            | Explain the working of 2's complement adder/subtractor with logic block diagram. |                                                                                                                        |        |
| 15.            | Draw and explain the working of decimal to BCD encoder.                          |                                                                                                                        |        |
| 16.            | Draw a                                                                           | and explain the working of asynchronous decade counter.                                                                | 10     |
| 17.            | <i>(a)</i> Dr                                                                    | raw and explain the working of 4-bit ring counter.                                                                     | 7      |
|                | <i>(b)</i> Dr                                                                    | raw the logic circuit of 3-bit asynchronous up-down counte                                                             | er. 3  |

\* \* \*

Draw and explain the working of 4-bit shift right register with timing

10

18.

diagram.