6234

BOARD DIPLOMA EXAMINATION, (C-16) OCTOBER/NOVEMBER—2023

DECE - THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time: 3 Hours] [Total Marks: 80

PART—A

 $3 \times 10 = 30$

- **Instructions**: (1) Answer **all** questions.
 - (2) Each question carries **three** marks.
 - (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. Convert the following binary numbers into hexadecimal:
 - $(10100010)_{2}$
 - (b) $(1110011)_{2}$
 - $(00111011)_2$ (c)
- 2. State any three Boolean postulates.
- 3. Write Excess-3 code for a decimal number 54.
- 4. Define the terms (a) propagation delay and (b) noise margin of digital ICs.
- 5. List the applications of multiplexer.
- 6. Draw the logic circuit of half-adder using NOR gates only.
- 7. State the need for preset and clear inputs in flip-flops.
- 8. Differentiate between level clocking and edge triggering.
- 9. Define modulus of a counter. What is the modulus of 4-bit counter?
- Compare static RAM and dynamic RAM. 10.

/6234 1 [Contd...

- **Instructions:** (1) Answer *any* **five** questions.
 - (2) Each question carries **ten** marks.
 - (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- Explain the basic logic gates (AND, OR and NOT) with truth tables. 11.
- Write the Boolean expression of sum of minterms from the following **12.** truth table and simplify it using K-map:

Inputs			Output
A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- Explain the working of totem pole output TTL NAND gate with circuit 13. diagram.
- 14. Draw full-adder circuit using basic gates and explain its operation with truth table.
- **15.** Draw and explain the working of decimal to BCD encoder.
- 16. Explain master slave JK flip-flop with necessary diagrams and truth table.
- **17**. Draw and explain the working of 4-bit synchronous counter.
- 18. Draw and explain the working of 4-bit bidirectional shift register.

/6234 2 AA23(048)-PDF