

C16-EC-305

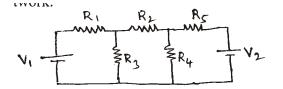
6236

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL-2018

DECE—THIRD SEMESTER EXAMINATION

NETWORK ANALYSIS

Time : 3 hours]


[Total Marks : 80

PART-A

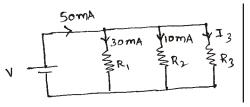
3×10=30

Instructions : (1) Answer **all** questions.

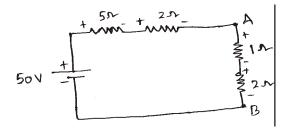
- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. State Ohm's law.
- 2. Draw ideal voltage source and ideal current source.
- **3.** Define the terms 'junction', 'loop' and 'mesh' in circuits.
- 4. Determine the number of node voltage equations required to solve the following network :

- 5. State reciprocity theorem.
- **6.** Give the transformation formulae for star to delta transformation.
- **7.** Write Laplace transforms for unit-step function and exponential function.

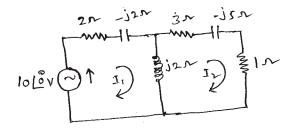
/6236 1


[Contd...

WWW.MANARESULTS.CO.IN


- 8. What are initial conditions?
- **9.** Define the terms 'characteristic impedance' and 'propagation constant'.
- **10.** List the advantages of constant-k filters.

Instructions : (1) Answer any **five** questions.

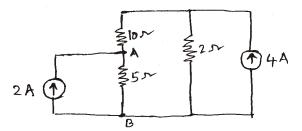

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Determine the current I_3 in the following circuit using Kirchhoff's current law (KCL) :

(b) Find the voltage between A and B in the following circuit using Kirchhoff's voltage law (KVL) :

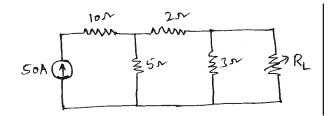
12. Find the mesh currents in the following network using mesh current analysis :

[Contd...

4


6

WWW.MANARESULTS.CO.IN


2

13. In the circuit shown below, determine the node voltages V_1 and V_2 using node voltage analysis :

14. Apply superposition theorem to the Network given below and find the voltage V_{AB} :

15. Determine the maximum power delivered to the load R_L in the following circuit :

- **16.** (a) Derive an expression for the current in an *RL* circuit (series RL circuit).
 - (b) A series RL circuit with R 50 ohms and L 10 H has a constant voltage source V 100 V applied at t 0 and the inductor has no initial current. Find the equation for the current in the circuit.
- 17. Briefly explain (a) linear property (b) first shifting property and (c) change of scale property of Laplace transform.
- **18.** Explain -type attenuator with circuit diagram (symmetrical type).

/6236

WWW.MANARESULTS.CO.IN

6

4

AA8(A)—PDF