C16-EC-305
6236

BOARD DIPLOMA EXAMINATIONS
 OCT/NOV-2019
 DECE- THIRD SEMESTER
 NETWORK ANALYSIS

Time: 3 hours
Max. Marks: 80
PART - A $\quad \mathbf{3 \times 1 0}=\mathbf{3 0}$
Instructions: 1. Answer all questions.
2. Each question carries Three Marks.
3. Answer should be brief and straight to the point and should not exceed Five simple sentences.

1. Define passive and active elements.
2. Mention the limitations of Ohm's law.
3. Define the terms Branch, Junction and mesh in circuits.
4. Draw the Dual of the following network.

5. State Superposition theorem.
6. Give the transformation formulae for Delta to Star transformation.
7. Define the terms Steady state and Transient state.
8. State Inverse Laplace Transform.
9. Define the terms Neper and Decibel.
10. state the function of attenuator circuit.

> PART - B
$5 \times 10=50$
Instructions: 1. Answer any Five questions
2. Each question carries TEN Marks.
3. Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. a) Find the current in the circuit shown below using KVL. Also determine the voltage across each resistor.

b) Define KVL and KCL.
12. Determine the mesh currents I_{1} and I_{2} in the following circuit using mesh current analysis.
[Cont..,

13. In the network shown below, find the voltages of nodes 1 and 2 using node voltage analysis.

14. Find the current following through the 5 ohm resistor of the circuit shown below using Thevenin's theorem.

15. Determine the Norton's equivalent circuit between the terminals A and B of the circuit given below.

16. a) Derive an expression for the current in an RC circuit. (Series RC circuit).
b) A series RC circuit with $\mathrm{R}=5000$ ohms and $\mathrm{C}=20 \mu \mathrm{~F}$ has a constant voltage source $\mathrm{V}=100 \mathrm{v}$ applied at $\mathrm{t}=0$ and the capacitor has no initial charge. Find the equation for the current in the circuit.
17. Explain the Initial value theorem and Final value theorem.
18. Define LPF, HPF, BPF and BSF. Also draw the characteristic curves for these filters.

