BOARD DIPLOMA EXAMINATION

MARCH/APRIL - 2019
COMMON FIRST YEAR EXAMINATION
ENGINEERING MATHEMATICS - I

$$
P A R T-A
$$

$$
10 \times 3=30
$$

Instructions:

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not exceed FIVE simple sentences
(1) Resolve $\frac{x^{4}}{x^{2}-3 x+2}$ into Partial Fractions
(2) If $A=\left[\begin{array}{cc}2 & -4 \\ -5 & 3\end{array}\right]$ then find $A A^{T}$
(3) Evaluate $\left|\begin{array}{ccc}0 & q & -r \\ -q & 0 & p \\ r & -p & 0\end{array}\right|$
(4) Prove that $\tan 9 A-\tan 5 A-\tan 4 A=\tan 9 A \tan 5 A \tan 4 A$
(5) Prove that $\cos \left(45^{\circ}+\theta\right) \cdot \cos \left(45^{\circ}-\theta\right)=\frac{1}{2} \cos 2 \theta$
(6) Find the modulus amplitude form of the complex number $-\sqrt{3}-i$
(7) Find the intercepts made by the line $3 x-2 y=2$ on the co-ordinate axes
(8) Find the distance between the parallel lines $5 x-y+11=0$ and $5 x-y+13=0$
(9) Evaluate $\lim _{x \rightarrow 0}\left(\frac{5 x^{2}+x+1}{6 x^{2}-3 x-5}\right)$
(10) Differentiate $e^{3 x} \sin x$ with respect to x

$$
P A R T-B
$$

$$
5 \times 10=50
$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
(11) (a) Solve the equations $x+y+z=6, x-y+z=2$ and $2 x+y-z=1$ by Crammer's Rule
(b) Find the adjoint of the matrix $\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
(12) (a) Prove that $\frac{\sin 3 A \sin 7 A+\sin A \sin 11 A}{\sin 3 A \cos 7 A+\sin A \cos 11 A}=\tan 8 A$
(b) If $\operatorname{Tan}^{-1} x+\operatorname{Tan}^{-1} y+\operatorname{Tan}^{-1} z=\frac{\pi}{2}$ then show that $x y+y z+z x=1$
(13) (a) Solve the equation $\sin 3 \theta-\sin \theta=\sin 5 \theta$
(b) Solve the $\Delta^{l e} A B C$ if $A=45^{\circ}, b=\sqrt{3}+1, C=60^{\circ}$
(14) (a) Find the equation of the Circle with center at the point $(1,-1)$ and whose tangent is the line $x+y+5 \sqrt{2}=0$
(b) Find the center, vertices, eccentricity, foci and length of latus rectum of the Hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{4}=1$
(15) (a) If $x=b(\cos \theta+\sin \theta), y=a(\cos \theta-\sin \theta)$ then find $\frac{d y}{d x}$
(b) Find $\frac{d y}{d x}$ if $x^{3}+y^{3}=3 a x y$
(16) (a) If $x=a \cos \theta, y=b \sin \theta$ then find $\frac{d^{2} y}{d x^{2}}$
(b) If $u(x, y)=\sin ^{-1}\left(x^{2} y+y^{2} x\right)$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3$ tan u
(17) (a) Find the equations of tangent and normal to the curve $y=x^{2}-2 x+1$ at the point where it cuts the x-axis
(b) The volume of a cube is increasing at the rate of 10 cubic inches/sec. Find the rate of increase of its surface area at the instant when the edge of the cube is 10 inches
(18) (a) The sum of two numbers is 72 . Find them so that their product is maximum
(b) The radius of a spherical balloon is increased by 3%. Find the approximate percentage increase in its volume. Also find the approximate percentage increase in its surface area

