BOARD DIPLOMA EXAMINATION MARCH/APRIL - 2019 COMMON FIRST YEAR EXAMINATION ENGINEERING MATHEMATICS - I

Time: 3Hours

Max. Marks : 80

 $10 \times 3 = 30$

Instructions:

- Answer **ALL** questions and each question carries **THREE** marks
- Answers should be brief and straight to the point and shall not exceed **FIVE** simple sentences

PART - A

(1) Resolve $\frac{x^4}{x^2 - 3x + 2}$ into Partial Fractions

(2) If
$$A = \begin{bmatrix} 2 & -4 \\ -5 & 3 \end{bmatrix}$$
 then find AA^T

(3) Evaluate
$$\begin{vmatrix} 0 & q & -r \\ -q & 0 & p \\ r & -p & 0 \end{vmatrix}$$

- (4) Prove that $\tan 9A \tan 5A \tan 4A = \tan 9A \tan 5A \tan 4A$
- (5) Prove that $\cos(45^{\circ} + \theta) \cdot \cos(45^{\circ} \theta) = \frac{1}{2} \cos 2\theta$
- (6) Find the modulus amplitude form of the complex number $-\sqrt{3} i$
- (7) Find the intercepts made by the line 3x 2y = 2 on the co-ordinate axes
- (8) Find the distance between the parallel lines 5x y + 11 = 0 and 5x y + 13 = 0

www.manaresults.co.in

/6035

*

(9) Evaluate
$$\lim_{x\to 0} \left(\frac{5x^2 + x + 1}{6x_*^2 - 3x - 5} \right)$$

(10) Differentiate $e^{3x}sin x$ with respect to x

$$\overrightarrow{PART - B} \qquad \qquad 5 \times 10 = 50$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
- (11) (a) Solve the equations x + y + z = 6, x y + z = 2 and 2x + y z = 1 by Crammer's Rule

(b) Find the adjoint of the matrix
$$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(12) (a) Prove that
$$\frac{\sin 3A \sin 7A + \sin A \sin 11A}{\sin 3A \cos 7A + \sin A \cos 11A} = \tan 8A$$

(b) If
$$Tan^{-1}x + Tan^{-1}y + Tan^{-1}z = \frac{\pi}{2}$$
 then show that $xy + yz + zx = 1$

(13) (a) Solve the equation $\sin 3\theta - \sin \theta = \sin 5\theta$

- (b) Solve the $\Delta^{le}ABC$ if $A = 45^{\circ}$, $b = \sqrt{3} + 1$, $C = 60^{\circ}$
- * (14) (a) Find the equation of the Circle with center at the point (1, -1) and whose tangent is the line $x + y + 5\sqrt{2} = 0$
 - (b) Find the center, vertices, eccentricity, foci and length of latus rectum of the Hyperbola $\frac{y^2}{9} \frac{x^2}{4} = 1$

www.manaresults.co.in

/6035

*

(15) (a) If $x = b(\cos \theta + \sin \theta), y = a(\cos \theta - \sin \theta)$ then find $\frac{dy}{dx}$

(b) Find
$$\frac{dy}{dx}$$
 if $x^3 + y^3 = 3axy$

(16) (a) If $x = a \cos \theta$, $y = b \sin \theta$ then find $\frac{d^2y}{dx^2}$

(b) If
$$u(x, y) = \sin^{-1}(x^2y + y^2x)$$
, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3 \tan u$

- (17) (a) Find the equations of tangent and normal to the curve $y = x^2 2x + 1$ at the point where it cuts the x-axis
 - (b) The volume of a cube is increasing at the rate of 10 *cubic inches/sec*. Find the rate of increase of its surface area at the instant when the edge of the cube is 10 *inches*
- (18) (a) The sum of two numbers is 72. Find them so that their product is maximum
 - (b) The radius of a spherical balloon is increased by 3%. Find the approximate percentage increase in its volume. Also find the approximate percentage increase in its surface area

www.manaresults.co.in

*

*