BOARD DIPLOMA EXAMINATION JUNE - 2019 COMMON FIRST YEAR EXAMINATION ENGINEERING MATHEMATICS - I

Time: 3Hours

Max. Marks : 80

$$PART - A 10 \times 3 = 30$$

Instructions:

- Answer **ALL** questions and each question carries **THREE** marks
- Answers should be brief and straight to the point and shall not exceed **FIVE** simple sentences
- (1) Resolve $\frac{6x^2 + 5x 2}{2x^3 x^2 x}$ into Partial Fractions

(2) If
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$$
 then find $A^2 + 2A + 3A$

(3) Find the determinant of the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 2 \\ 1 & -1 & -3 \end{bmatrix}$

- (4) Prove that $\cos^2 75^\circ \cos^2 15^\circ = \frac{-\sqrt{3}}{2}$
- (5) Show that $\sin 8\theta = 8 \sin \theta \cos \theta \cos 2\theta \cos 4\theta$
- (6) Find the modules of the complex number $\frac{7+i}{3-4i}$
- (7) Find the intercepts made by the line 13x + 7y + 11 = 0 on the co-ordinate axes
- (8) Find the equation of the straight line passing through the point (1, 2) and parallel to the line 3x + 4y 6 = 0

*

www.manaresults.co.in

1

(9) Evaluate
$$\lim_{x \to a} \left(\frac{(x+3)^{\frac{5}{2}} - (a+3)^{\frac{5}{2}}}{* x - a} \right)$$

(10) Differentiate $e^{3x}sec x$ with respect to x

$$\overrightarrow{PART - B} \qquad \qquad 5 \times 10 = 50$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
- (11) Solve the equations x + y + z = 6, x y + z = 2 and 2x + y z = 1 using matrix inversion method
- (12) (a) Prove that $\cos 40^{\circ} + \cos 80^{\circ} + \cos 160^{\circ} = 0$

(b) If
$$Cot^{-1}\left(\frac{1}{x}\right) + Cot^{-1}\left(\frac{1}{y}\right) + Cot^{-1}\left(\frac{1}{z}\right) = \frac{\pi}{2}$$
 then show that $xy + yz + zx = 1$

(13) (a) Solve the equation $\cot \theta + \csc \theta = \sqrt{3}$

(b) In a
$$\Delta^{le}ABC$$
 if $b + c = 3a$ then prove that $\cot\left(\frac{B}{2}\right) \cdot \cot\left(\frac{C}{2}\right) = 2$

- (14) (a) Find the equation of the circle with (2, 1) and (-4, 3) as end points of a diameter
 - (b) Find the center, vertices, eccentricity, foci and length of latus rectum of the Ellipse $\frac{x^2}{4} + \frac{y^2}{36} = 1$

www.manaresults.co.in

 $\mathbf{2}$

/6035

*

(15) (a) Find
$$\frac{dy}{dx}$$
, if $y = \cot^{-1}\left(\frac{\sin 2x}{1 - \cos 2x}\right)$
(b) If $y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + \dots \infty}}}$ then find $\frac{dy}{dx}$

(16) (a) Find
$$\frac{d^2y}{dx^2}$$
, if $x = at^2$, $y = 2at$

(b) If
$$u(x, y) = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$$
, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$

- (17) (a) Find the equations of tangent and normal to the curve $x^2 + y^2 6x 2y + 5 = 0$ at the point (2, -1)
 - (b) A circular metal expands by heat so that its radius increases at the rate of $1.5 \ cm/sec$. Find the rate of increase of its area when the radius is $12 \ cm$
- (18) (a) The sum of two numbers is 72. Find them so that the sum of their squares is minimum
 - (b) The side of a square plate is increased by 0.1%. Find the approximate percentage increase in its area

*

*