BOARD DIPLOMA EXAMINATION
 JUNE - 2019
 COMMON FIRST YEAR EXAMINATION
 ENGINEERING MATHEMATICS - I

Instructions:

- Answer ALL questions and each question carries THREE marks
- Answers should be brief and straight to the point and shall not exceed FIVE simple sentences
(1) Resolve $\frac{6 x^{2}+5 x-2}{2 x^{3}-x^{2}-x}$ into Partial Fractions
(2) If $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 5\end{array}\right]$ then find $A^{2}+2 A+3 I$
(3) Find the determinant of the matrix $\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & -1 & 2 \\ 1 & -1 & -3\end{array}\right]$
(4) Prove that $\cos ^{2} 75^{\circ}-\cos ^{2} 15^{\circ}=\frac{-\sqrt{3}}{2}$
(5) Show that $\sin 8 \theta=8 \sin \theta \cos \theta \cos 2 \theta \cos 4 \theta$
(6) Find the modules of the complex number $\frac{7+i}{3-4 i}$
(7) Find the intercepts made by the line $13 x+7 y+11=0$ on the co-ordinate axes
(8) Find the equation of the straight line passing through the point $(1,2)$ and parallel to the line $3 x+4 y-6=0$
(9) Evaluate $\lim _{x \rightarrow a}\left(\frac{(x+3)^{\frac{5}{2}}-(a+3)^{\frac{5}{2}}}{x-a}\right)$
(10) Differentiate $e^{3 x} \sec x$ with respect to x

$$
P A R T-B \quad 5 \times 10=50
$$

Instructions:

- Answer ANY FIVE questions and each question carries TEN marks
- The answers should be comprehensive and criteria for valuation is the content but not the length of the answer
(11) Solve the equations $x+y+z=6, x-y+z=2$ and $2 x+y-z=1$ using matrix inversion method
(12) (a) Prove that $\cos 40^{\circ}+\cos 80^{\circ}+\cos 160^{\circ}=0$
(b) If $\operatorname{Cot}^{-1}\left(\frac{1}{x}\right)+\operatorname{Cot}^{-1}\left(\frac{1}{y}\right)+\operatorname{Cot}^{-1}\left(\frac{1}{z}\right)=\frac{\pi}{2}$ then show that $x y+y z+z x=1$
(13) (a) Solve the equation $\cot \theta+\operatorname{cosec} \theta=\sqrt{3}$
(b) In a $\Delta^{l e} A B C$ if $b+c=3 a$ then prove that $\cot \left(\frac{B}{2}\right) \cdot \cot \left(\frac{C}{2}\right)=2$
(14) (a) Find the equation of the circle with $(2,1)$ and $(-4,3)$ as end points of a diameter
(b) Find the center, vertices, eccentricity, foci and length of latus rectum of the Ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{36}=1$
(15) (a) Find $\frac{d y}{d x}$, if $y=\cot ^{-1}\left(\frac{\sin 2 x}{1-\cos 2 x}\right)$

(16) (a) Find $\frac{d^{2} y}{d x^{2}}$, if $x=a t^{2}, y=2 a t$
(b) If $u(x, y)=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$
(17) (a) Find the equations of tangent and normal to the curve $x^{2}+y^{2}-6 x-2 y+5=0$ at the point $(2,-1)$
(b) A circular metal expands by heat so that its radius increases at the rate of $1.5 \mathrm{~cm} / \mathrm{sec}$. Find the rate of increase of its area when the radius is 12 cm
(18) (a) The sum of two numbers is 72 . Find them so that the sum of their squares is minimum
(b) The side of a square plate is increased by 0.1%. Find the approximate percentage increase in its area

