

C16-EE/CHPP/-103

6036

BOARD DIPLOMA EXAMINATION, (C-16) OCTOBER—2020 DEEE—FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART-A

3×10=30

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. State any three advantages of SI units.
- **2**. A force of $3\hat{i} + 2\hat{j} + 4\hat{k}$ N acts on a body and produces a displacement of $\hat{i} + 2\hat{j} + 3\hat{k}$ m. Calculate the work done.
- अ
 - **3**. A body is thrown up vertically with a velocity of 39.2 m/s. Find the maximum height reached by the body ($g = 9.8 \text{ m/s}^2$).
 - **4**. The values of maximum velocity and maximum acceleration of a particle in SHM are 2 cm/s and 8 cm/s² respectively. Calculate the frequency of the particle.
 - 5. State first law of thermodynamics and mention its expression.
 - 6. Write Sabine's formula and name the parameters, involved in it.
 - 7. Define capillarity and angle of contact.

/6036

[Contd....

www.manaresults.co.in

- 8. Define coefficient of viscosity and write its dimensional formula.
- 9. State Columb's law of magnetism and mention its formula.
- 10. State photoelectric emission and write photoelectric equation.

Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
- (a) State parallelogram law of vectors and derive an expression for the magnitude of the resultant vector, using parallelogram law of vectors.
 - (b) Define cross product and mention one example.
- **12**. (a) Derive expressions for maximum height and time of flight of a projectile in oblique projection.
 - (b) A stone is projected vertically upwards from the top of a tower with a velocity of 4.9 m/s. It reaches the ground in 6 seconds ($g = 9.8 \text{ m/s}^2$). Calculate the height of the tower.
- **13.** (a) Define three types of friction and show that $\mu = \tan \theta$ where μ is coefficient of friction and θ is the angle of friction w.r.t. a rough horizontal surface.
 - (b) Write four methods of reducing friction.
- 14. (a) Define kinetic energy and derive an expression for kinetic energy of a body of mass m and moving with a velocity v, moving along a straight line.
 - (b) A body of mass 4 kg falls from a height of 120 m. Find the potential and kinetic energies of the body after 5 seconds of its motion.

/6036

[Contd....

3

6

4

6

4

6

4

www.manaresults.co.in

15.	(a)	Derive expression for <i>(i)</i> velocity and <i>(ii)</i> acceleration of a particle, executing simple harmonic motion.	6
	(b)	The ratios of accelerations due to gravity at two different places is 4:9. Calculate the ratio of time periods of a simple pendulum at these two places.	4
16 .	(a)	Derive the relationship between molar specific heats of a gas.	7
	(b)	2 litres of gas is heated from 127 °C to 427 °C at constant pressure. Find its final volume.	3
17.	(a)	State any three shortcomings of a noise pollution and write any four measures to be taken to minimize the noise pollution.	7
	(b)	Write any three differences between musical sound and noise.	3
18 .	(a)	Define magnetic moment and magnetic induction field strength.	4
	(b)	Derive a formula for the balancing condition of Wheatstone's bridge.	6

*

 $\star \star \star$

/6036

*