

 $c_{16-EE-103/c_{16-CHPP-}103}$

6036

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2017 DEEE-FIRST YEAR EXAMINATION

ENGINEERING PHYSICS

Time : 3 hours]

[Total Marks : 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Define fundamental quantities and derived quantities. Give two examples each.
- 2. Define scalar and vector quantities. Give two examples each.
- **3.** Define projectile. At which point on its path a projectile has the lowest speed?
- **4.** The displacement of a particle performing SHM is $y = 4\sin(4 t \frac{1}{6})$ where y is metre. Find—
 - (a) amplitude
 - (b) initial phase
 - (c) time period

/6036

www.ManaResults.co.in

- 5. State the gas laws.
- 6. Write Sabine's formula and name the symbols in it.
- 7. Define surface tension. Give one example.
- **8.** A load having mass 10 kg is suspended by a metal wire of certain length having a cross-sectional area 4 mm². Find the stress.
- 9. State Ohm's law. Write the SI units of specific resistance.
- 10. Write any three applications of photoelectric effect.

5

4

1

5

4

Instructions : (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.

11. (<i>a</i>) State	parallelogram	law of vector	addition.	1
-------------------------------	---------------	---------------	-----------	---

- *(b)* Derive the expression for the magnitude of the resultant vector.
- (c) Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is 7 unit?
- **12.** (a) Define acceleration due to gravity.
 - (b) Show that the path of a horizontally projected body is a parabola.
 - (c) A ball is thrown from a field with a speed of 20 m/s at an angle of 45° with the horizontal. At what distance will it hit the field again? Take $g = 10 \text{ m/s}^2$.

```
/6036 2 [Contd...
www.ManaResults.co.in
```

13.	(a)	Define friction.	1
	(b)	Derive the expression for acceleration of a body moving down a rough inclined plane making an angle with the horizontal. Let be the coefficient of friction.	5
	(C)	In a children-park an inclined plane is constructed with an angle of incline 45°. Find the acceleration of a boy sliding on it if the coefficient of friction between the cloth of the boy and the incline is 0.6 and $g = 10 \text{ m/s}^2$.	4
14.	(a)	Define work, power and energy.	3
	(b)	State the law of conservation of energy.	1
	(c)	Prove the law of conservation of energy in the case of freely falling body.	6
15.	(a)	Derive the expression for displacement and velocity of a particle executing SHM.	+3
	(b)	Calculate the length of the seconds pendulum at a place where the value of g is 9.8 ms ² .	4
16 .	(a)	Define isothermal process and adiabatic process.	2
	(b)	Derive the gas equation PV RT.	5
	(c)	The volume of certain mass of air at 17 °C is 500 cm^3 . Find its volume at 162 °C if the pressure is kept constant.	3
17.	(a)	Define noise pollution and write any four effects of it. 1	+4
	(b)	State any five methods of controlling of noise pollution.	5
18.	(a)	Define conductance and write its SI unit.	2
	(b)	Derive the expression for couple acting on a bar magnet placed in a uniform magnetic field.	5
	(c)	Two magnetic poles each of strength 40 Am are separated in air by a distance of 0.2 m. Find the fore between them ($_0$ 4 10 7 H / m).	3

$\star\star\star$

/6036

³AA7(A)—PDF www.ManaResults.co.in