

C16-EE-106

6040

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2018 DEEE-FIRST YEAR EXAMINATION

BASIC ELECTRICAL ENGINEERING

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Define the terms (a) resistance, and (b) specific resistance.

 $1\frac{1}{2}+1\frac{1}{2}=3$

- 2. State and explain Ohm's law.
- **3.** Define electric power and electrical energy and give their SI units $1\frac{1}{2}+1\frac{1}{2}=3$
- 4. State Joule's law of heating.
- **5.** State Fleming's left-hand rule.
- **6.** Plot the field patterns due to—
 - (a) straight current carrying conductor;
 - (b) solenoid;
 - (c) toroid. 1+1+1=3

/6040 1 [Contd...

- 7. State Lenz's law.
- 8. Classify various types of induced e.m.f.
- **9.** Define capacitance and state its units.

2+1=3

10. Determine the capacitance of parallel-plate capacitor having an area of 625 cm² separated by a glass dielectric of 0.5 cm thickness with relative permittivity as 6.

PART—B

 $10 \times 5 = 50$

5

5

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Derive an expression for equivalent resistance, when three resistances are connected in parallel.
 - (b) Find the equivalent resistance between the terminals A and B in the given network:

- **12.** If the three resistances 2 , 4 , 6 respectively are connected in series across 60 V supply, find the—
 - (a) total resistance;
 - (b) current drawn from supply;
 - (c) potential drop across each resistance;
 - (d) power consumed by each resistance;
 - (e) total power delivered by the supply.

10

/**6040** 2 [Contd...

10.	/ L I	louse has the following loads.	
	(a)	5 lamps of 60 W each, working for 10 hours/day	
	(b)	1 electric iron of 100 W each, working for 1 hour/day	
	(c)	5 fans of 80 W each, working for 8 hours/day	
	(d)	2 heaters of 1500 W each, working for 6 hours/day	
	(e)	1 electric motor of 1.5 HP, working for 4 hours/day at an efficiency of 85%	
	Sep	culate the monthly electricity bill for the month of etember, if rate of charge per unit is $\ref{2}$ and add $\ref{2}$ as ter rent per month.	10
14.	(a)	Explain the operation of an electric kettle with a neat sketch.	5
	(b)	An electric kettle rated at $1.5~kW$, $230~V$ takes 5 minutes to bring 1 kg of water to boiling point from $15~^{\circ}C$. Find the efficiency of a kettle.	5
15.	Compare the magnetic circuit with electric circuit in all aspects.		10
16.	(a)	Derive an expression for magnitude of dynamically induced e.m.f.	5
	(b)	A coil of 1000 turns is wound on a toroidal magnetic core having a reluctance of 10 ⁴ A-t/Wb. When the coil current is increasing at the rate of 5 A/s determine the comf	
		is increasing at the rate of 5 A/s, determine the e.m.f. induced in the coil.	5
17.	(a)	Derive an expression for lifting power of a magnet.	5
	(b)	Determine the force required in kg to separate two	
		magnetic forces with contact area of 100 cm ² , if the flux density across the surface is 0·1 tesla.	5
18.	(a)	Derive an expression for equivalent capacitance, when three capacitors are connected in parallel.	5
	(b)	A parallel-plate air capacitor of area $25\ \mathrm{cm}^2$ and plates being separated by 1 mm apart is charged to a potential	
		of 100 volts. Calculate the energy stored in it.	5

3

AA8—PDF

/6040