

6040

BOARD DIPLOMA EXAMINATION, (C-16)

OCTOBER/NOVEMBER-2023

DEEE - FIRST YEAR EXAMINATION

BASIC ELECTRICAL ENGINEERING

Time: 3 Hours]

PART—A

[Total Marks : 80

 $3 \times 10 = 30$

Instructions : (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- **1.** State Ohm's law and give the equation with units.
- 2. Determine the resistance of 200 m length of a wire having a uniform cross-sectional area of 0.25 mm^2 , if the wire is made of platinum having a resistivity of $100 \times 10^{-8} \Omega$ -m.
- **3.** Define (*a*) electrical power and (*b*) electrical energy.
- **4.** List the heat producing appliances.
- **5.** Define Fleming's left hand rule.
- **6.** Define (*a*) Mmf and (*b*) Reluctance.
- **7.** State Faraday's laws of electromagnetic induction.
- **8.** Define co-efficient of coupling.
- **9.** Define Gauss theorem.
- 10. The capacitance of a capacitor formed by two parallel metal sheets, each 200 cm^2 in area, separated by a dielectric 3 mm thick is $4 \times 10^{-12} \text{ F}$. Determine relative permittivity of the dielectric.

/6040

*

1

[Contd...

Instr	ructi	ons: (1) Answer any five questions.	
		(2) Each question carries ten marks.	
		(3) Answers should be comprehensive and criterion valuation is the content but not the length of the ans	n for wer.
11.	(a) Derive an expression for equivalent resistance, when three resistances are connected in parallel.		5
	(b)	Calculate the total resistance when three resistances 10Ω , 25 and 60Ω are connected in <i>(a)</i> series and <i>(b)</i> parallel.	Ω 5
12.	Der	ive an expression $\alpha_t = \alpha_0/(1 + \alpha_0 t)$.	10
13.	A house has the following loads : 10		10
	(a)	10 lamps of 100 watt each, working for 8 hours a day	
	(b)	5 fans of 80 watt each, working for 12 hours a day	
	(C)	1 electric iron of 550 watt, working for 2 hours a day	
	(d)	1 refrigerator of 350 watt, working for 14 hours a day	
	Cal is ₹	culate the monthly bill at 80 paise/unit, if the meter rent per mo 20.	nth
14.	Dra	w a neat sketch of electric iron and explain its different parts.	10
15.	(a)	Draw the magnetic field pattern due to (i) solenoid and (ii) toroi	d.
	(b)	An electromagnet has an air gap of 3 mm and flux density in the gap is 1.8 Wb/m^2 . Determine the ampere turns for the gap.	e air 5+5=10
16.	Der	ive an expression for (i) self-inductance and (ii) mutual inductan	ce. 10
17.	(a)	Explain dynamically induced emf.	5+5=10
	(b)	A flux of 0.4 mWb is produced by a current of 10A flowing throug 200 turns coil corresponding to the complete reversed of the curr in 0.02 second. Also find the magnitude of the emf induced.	gh a cent
/6040		2	[Contd

*

*

- **18.** (a) Derive an expression for energy stored in a capacitor. 5+5=10
 - (b) A capacitor consisting of two parallel plates 0.55 mm apart in air and each of effective area $400 \times 10^{-4} \text{ m}^2$ is connected to a 200 V battery. Calculate *(i)* the capacitance and *(ii)* the charge.

/6040

*

*

AA23(048)-PDF

www.manaresults.co.in