6237

BOARD DIPLOMA EXAMINATION, (C-16) MARCH /APRIL-2019 THIRD SEMESTER(COMMON) EXAMINATION

ENGINEERING MATHEMATICS-II

Time: 3 Hours Max.Marks: 80

PART-A

10x3 = 30M

Instructions: 1) Answer all questions.

- 2) Each question carries three marks.
- 3) Answers should be breif and straight to the point and shall not exceed five simple sentences.
- 1) Evaluate $\int (e^x + 2\sin x + \frac{6}{\sqrt{1-x^2}})dx$
- 2) Evaluate $\int \frac{\sin(\log x)}{x} dx$
- 3) Evaluate $\int_{-1}^{1} (x^2-3x+2)dx$
- 4) Find the area bounded by the parabola $y=x^2$, x-axis between the lines x=1 and x=2.
- 5) Find $L\left[e^{2t}-4t^3+2Sin3t\right]$
- 6) Find $L^{-1}\left\{\frac{2}{s-4} + \frac{3}{s^2-9}\right\}$
- 7) Write the fourier series for the function f(x) defined in the intervel $(c, c+2\pi)$

8) Find the different equation of family of curves $y=Ae^x+Be^{-x}$ where A,B are arbitrary constants.

9) Solve
$$\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$$
.

10) Solve $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 12y = 0$

PART-B

10x5 = 50M

Instructions: 1) Answer any five questions

- 2) Each question carries ten marks
- 3) Answer should be comprehensive and the criteria for valuation is the content but not the length of the answer.
- 11) a) Evaluate $\int \sin^3 x \cos^6 x dx$
 - b) Evaluate $\int \frac{x}{(x+1)(x+3)} dx$
- 12) a) Evaluate $\int x \tan^{-1} x dx$
 - b) Evaluate $\int_{0}^{\pi/2} \log \tan x dx$
- 13) a) Find the R.M.S value of $\sqrt{8-4x^2}$ between x=0 and x=2
 - b) Find the volume of the solid of revolution the area between the curve $y=x^2-4$ and x-axis about x-axis.
- 14) a) Obtain the value of $\int_{0}^{1} \frac{1}{1+x^2}$ dx using Sympson's rule by dividing the interval [0,1] into four equal parts.
 - b) Find $L\left\{\frac{1-\cos t}{t}\right\}$

15) a) Find
$$L^{-1} \left| \frac{\sqrt[4]{S^2}}{(S-2)^3} \right|$$

- b) Using canvolution therom, find $L^{-1}(\frac{s}{(s^2+1)(s^2+2)})$
- 16) Find the fourier Series for $f(x) = x-x^2$ in the interval $(-\pi, \pi)$. Hence show

that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$

- 17) a) Solve $\frac{dy}{dx} + y = e^{-3x}$
 - b) Solve $\left(x^{12}+y\right)dx+\left(y^{8}+x\right)dy=0$
- 18) a) Solve $(D^2+4)y=\sin 2x$
 - b) Solve $(D^2+3D+2)y=x^2$

* * *