с16-м_402

6447

BOARD DIPLOMA EXAMINATION, (C-16) MARCH/APRIL-2018
 DME-FOURTH SEMESTER EXAMINATION

HYDRAULICS AND FLUID POWER CONTROL SYSTEMS

Time : 3 hours]
Total Marks : 80

PART—A

$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. At particular point inside the fluid gauge pressure is 2 bar and atmospheric pressure is 1.01325 bar. Determine the absolute pressure of the fluid.
2. State the continuity equation and write the mathematical expression of it.3
3. Mention the various losses in pipe flow.
4. Derive an expression for the normal force exerted by a water jet on a moving flat plate.
5. Define terms used in hydraulic turbines (a) hydraulic efficiency and (b) overall efficiency.
$11 / 2+1 \frac{1}{2}=3$
6. Write any four differences between reciprocating pump and centrifugal pump.
7. List out basic elements of hydraulic circuit.
[Contd...
8. State the functions of flow control valve and pressure control valve.
9. Write the applications of pneumatic power.
10. State the functions of lubricator and air filter in a pneumatic system.

$$
1 \frac{1}{2}+1^{1 / 2}=3
$$

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Explain the simple U-tube manometer with the help of neat sketch. Also derive an expression for measuring gauge pressure.
12. (a) The diameters of a tapered pipe at two different sections are 15 cm and 20 cm respectively. What is the discharge through the pipe if the velocity of liquid at bigger section is $4 \mathrm{~m} / \mathrm{s}$. Also calculate the velocity at smaller section.
(b) State the Bernoulli's equation and write the mathematical expression for it.
13. Find the maximum power transmitted that can be transmitted to power station through hydraulic pipe 3 km long and 20 cm diameter, when the pressure at the power station is $600 \mathrm{kN} / \mathrm{m}^{2}$. Take $f=0 \cdot 0075$.
14. A jet of water 20 mm in diameter, moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$, strikes on a series of vanes moving with a velocity of $3 \mathrm{~m} / \mathrm{s}$. Find-
(a) force exerted by jet;
(b) work done per second;
(c) efficiency of the jet. $4+3+3=10$
[Contd...
15. A pelton wheel operates under a head of 600 m , out of which one third is lost in friction in the penstock. Mean diameter of wheel is 3.5 m and runs at 200 RPM. Bucket angle at outlet is 15°. Discharge is $100 \mathrm{lit} / \mathrm{sec}$. The coefficient of velocity $\left(C_{V}\right)$ is 0.98. Determine-
(a) the power developed by the runner;
(b) hydraulic efficiency of the turbine.
16. A single acting single cylinder reciprocating pump operating at 120 RPM has a piston diameter of 200 mm and stroke of 300 mm . The suction head and delivery head are 4 m and 20 m respectively. Determine-
(a) theoretical discharge;
(b) theoretical power required to drive the pump;
(c) slip, if actual discharge is $0.02 \mathrm{~m}^{3} / \mathrm{s}$.
17. Explain the working of following pumps with neat sketches :

$$
5+5=10
$$

(a) Internal gear pump
(b) Vane pump
18. What are essential elements of pneumatic circuits? State their functions with the help of neat sketch.

