

COMMON - 102

7002

BOARD DIPLOMA EXAMINATION, (C-20)

FEBRUARY/MARCH —2022

DAE - FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS - I

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. If $A = \{-2,-1,0,1,2\}$ and $f : A \longrightarrow B$ is a function such that $f(x) = x^2 + x + 1$, then find the range of f.
- **2.** Resolve $\frac{x}{(x-3)(x+2)}$ into partial fractions.
- **3.** If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$, then find 3B 2A.
- **4.** Show that $\frac{\cos 36^{\circ} + \sin 36^{\circ}}{\cos 36^{\circ} \sin 36^{\circ}} = \tan 81^{\circ}$.
- 5. Prove that $\frac{\sin 2\theta}{1-\cos 2\theta} = \cot \theta$.
- **6.** Find the real and imaginary parts of the complex number (3 + 4i)(2 3i).

/7002 1 [Contd...

- Find the distance between the parallel lines 2x + 3y + 5 = 0 and **7**. 2x + 3y + 9 = 0.
- Evaluate $\lim_{x \to 2} \frac{x^3 27}{x 3}$. 8.
- Find the derivative of $x^3 + 6x^2 + 12x 13$. 9.
- If $y = 4x^2 8x + 2$, find $\frac{d^2y}{dx^2}$.

PART—B $8 \times 5 = 40$

Instructions: (1) Answer **all** questions.

- (2) Each question carries **eight** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- (a) Find the adjoint and inverse of the matrix $\begin{bmatrix} 1 & 3 & 3 \\ 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ 11.

(OR)

- (b) Solve the system of linear equations 3x + y + 2z = 3, 2x - 3y - z = -3, x + 2y + z = 4 using Cramer's rule.
- 12. Prove that $\cos A + \cos(120 + A) + \cos(120 - A) = 0$. (OR)
 - (b) Prove that $\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \tan^{-1}\left(\frac{2}{9}\right)$.
- (a) Solve $\cos \theta + \sin \theta = \sqrt{2}$. **13.**
 - (b) In any $\triangle ABC$, Show that $\sin A + \sin B + \sin C = \frac{S}{R}$.

/7002

2

14. (a) Find the equation of the circle with (1,2) and (-2,3) as the two ends of its diameter and find its centre and radius.

(OR)

- (b) Find the equation of the conic whose focus is (1,-1), directrix is x y + 3 = 0 and eccentricity is 1/2.
- **15.** (a) Find $\frac{dy}{dx}$, if $x^2 + y^2 + 2gx + 2fy + c = 0$, where g, f, c are constants.

(OR)

(b) If
$$u(x, y, z) = \log(x + y + z)$$
, then prove that $\frac{x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x} + z}{\partial x \partial y} = 1$.

PART—C

 $10 \times 1 = 10$

Instructions: (1) Answer the following question.

- (2) Each question carries ten marks.
- **16.** Find the lengths of the tangent, normal, sub-tangent and sub-normal for the curve $y = x^2 + 2x + 1$ at (1, 4).

/7002