7017

BOARD DIPLOMA EXAMINATION, (C-20)

MAY—2023

DCE - FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 Hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- 1. If $A = \left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ and $f: A \to B$ is a function such that $f(x) = \cos x$, then find the range of f.
- **2.** Resolve $\frac{x-1}{(x-2)(x+3)}$ into partial fractions.
- **3.** If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$, then find 3B 2A.
- **4.** If $A + B = \frac{\pi}{4}$, then prove that $(1 + \tan A) (1 + \tan B) = 2$.
- **5.** Prove that $\sin\theta\sin(60^\circ \theta)\sin(60^\circ + \theta) = \frac{1}{4}\sin 3\theta$.
- **6.** Find the modulus of the complex number $\frac{7+24i}{3-4i}$.

- **7.** Find the equation of the straight line passing through (3, -4) and parallel to the line x + 7y + 1 = 0.
- **8.** Evaluate $\lim_{x \to 2} \frac{x^5 32}{x^3 8}$
- **9.** Find the derivative of $3\cos x + \log x + 21x + 5$.
- **10.** Find the derivative of $e^{\sin^{-1}x}$.

PART—B 8×5=40

- **Instructions:** (1) Answer **all** questions.
 - (2) Each question carries eight marks.
- **11.** (a) Find the value of x, if the matrix $\begin{bmatrix} x+1 & 2 & 3 \\ 1 & x+2 & 3 \\ 1 & 2 & x+3 \end{bmatrix}$ is singular.

(OR)

- (b) Solve the following system of equations using Cramer's rule 2x y + 3z = 9, x + y + z = 6, x y + z = 2.
- 12. (a) Prove that $\frac{\sin^2 A \sin^2 B}{\sin A \cos A \sin B \cos B} = \tan(A + B), A \neq B.$

(OR)

- (b) Prove that $\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \tan^{-1}\left(\frac{2}{9}\right)$.
- **13.** (a) Solve $\cos \theta + \sin \theta = \sqrt{2}$.

(OR)

- (b) In any $\triangle ABC$, if $\angle A = 60^{\circ}$, then prove that $\frac{b}{c+a} + \frac{c}{a+b} = 1$.
- **14.** (a) Find the equation of the circle passing through the points (0, 0), (6, 0) and (8, 4).

(OR)

- (b) Find the equation of the rectangular hyperbola whose focus is the point (-1, -3), and directrix is the line 2x + y + 1 = 0.
- **15.** (a) If $y = x^{x^{x^{-\infty}}}$, then show that $\frac{dy}{dx} = \frac{y^2}{x(1-y\log x)}$.

(OR)

(b) If $u(x, y) = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$.

PART—C

 $10 \times 1 = 10$

Instructions: (1) Answer the following question.

- (2) The question carries **ten** marks.
- **16.** Find the lengths of tangent, normal, sub tangent and sub normal to the parabola $y^2 = 4x$ at (1, 2).
