7017
 BOARD DIPLOMA EXAMINATION, (C-20)
 JUNE/JULY—2022
 DCE - FIRST YEAR EXAMINATION
 ENGINEERING MATHEMATICS - I

Time : 3 hours $]$
[Total Marks : 80

PART—A
$3 \times 10=30$

Instructions: (1) Answer all questions.
(2) Each question carries three marks.

1. If $A \square \square 2, \square, 0,1,2 \square$ and $f: A \square B$ is a function such that $f(x) \square x^{2} \square x \square$, then find the range of f.
2. Resolve $\frac{x}{(x \square)(x \square 3)}$ into partial fractions.
3. If $A \square \begin{array}{ccc}\frac{2}{2} & 3 & 1 \square \\ 6 & \square & 5 \square\end{array}, B \square \begin{array}{lll}\square & 2 & \square \square\end{array} \quad \begin{aligned} & \text { and } A \square B \square X \\ & \square\end{aligned} \square 0$, then find X.
4. If $A \sqcap B \sqcap \frac{3 \square}{4}$, then prove that $(1 \sqcap \cot A)(1 \sqcap \cot B) \sqcap 2$.
5. Prove that $\frac{1 \measuredangle \cos 2 \square}{\sin 2 \square} \square \cot \square$
6. Find the modulus of the complex number $(3 \sqcap 4 i)(2 \square 3 i)$.
7. Find the distance between the parallel lines $4 x \square 3 y \square 9 \square 0$ and $4 x \square 3 y \square 5 \square 0$
8. Evaluate $\lim _{x \square 0} \frac{\tan 9 x}{\tan 4 x}$
9. Find the derivative of $\sqrt{x} \sqsubset \sec x \square \log x$ w.r.t. x.
10. Find the derivative of $\sqrt{\tan 2 x}$ w.r.t. x.

> PART—B
$8 \times 5=40$

Instructions: (1) Answer all questions.
(2) Each question carries eight marks.
11. (a) Show that $\left|\begin{array}{ccc}a \llbracket b \varpi 2 c & a & b \\ c & b \square c \square 2 a & b \\ c & a & c \square a \square 2 b\end{array}\right| \square 2(a \square b \square c)^{3}$
(OR)
(b) Solve the following system of equations using matrix inversion method :

$$
x \sqcap y \sqsubset z \square 6, x \sqcap y \square z \square 2,2 x \sqcap y \sqsubset z \square
$$

12. (a) If $\cos x \square \cos y \square \frac{3}{5}$ and $\cos x \llbracket \cos y \llbracket \frac{2}{7}$, then show that $21 \tan \frac{\square x \square}{2} \square \square 10 \cot \frac{\square x \square}{2} \square_{\square 0}$
(b) Prove that $\tan \square \frac{1}{7} \square \square \tan \square \frac{1}{13} \square \square \tan \square \square \frac{2}{9} \square$
13. (a) Solve $2 \sin ^{2} \square \square \sin \square \square \square 0$
(OR)
(b) In any $\llbracket A B C$, show that $\cot \frac{A}{2} \sqsubset \cot \frac{B}{2} \sqsubset \cot \frac{C}{2} \square \frac{s^{2}}{\square}$
14. (a) Find the equation of the circle with $(-5,1)$ and $(3,-7)$ as the two end points of its diameter and also find its centre and radius.
(OR)
(b) Find the equation of the parabola whose focus is $(1,-1)$ and directrix is $x \square 2 y \square \square 0$
15. (a) If $x \square a(\square \sin \square)$ and $y \square a\left(1 \square \cos \square\right.$, then find $\frac{d y}{d x}$ at $\frac{\square}{2}$.
(OR)
(b) If $y \square \tan ^{\square} x$, then find $\left[1 \square x^{2} \square y_{2} \square 2 x y_{1} \square 0\right.$

PART-C $10 \times 1=10$

Instructions: (1) Answer the following question.
(2) Its carries ten marks.
16. Find the length of tangent, normal, sub-tangent and sub-normal at the point $(2,4)$ on the curve $y=x^{3}-2 x^{2}+4$ and also find the equations of tangent and normal.

