

$c_{20}-c_{-105}$

7021

BOARD DIPLOMA EXAMINATION, (C-20)

FEBRUARY/MARCH -2022

DCE - FIRST YEAR EXAMINATION

ENGINEERING MECHANICS - I

Time : 3 hours]

[Total Marks: 80

PART—A

3×10=30

Instructions : (1) Answer **all** questions.

*

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. Define the terms statics, dynamics, kinematics.
- 2. State Varignon's theorem and give expression for it.
- 3. Calculate the support reaction for the given beam :

- 4. Define centroid, centre of gravity and axis of symmetry.
- **5.** Define moment of inertia and radius of gyration and give expressions for them.
- 6. Define modulus of elasticity, Poisson's ratio and factor of safety.

/7021

*

[Contd...

- 7. Calculate the elongation (in mm) for a steel rod having 30 mm dia and 600 mm long, subjected to an axial pull of 60 kN. Take $E = 2 \times 10^5$ N/mm².
- 8. Calculate the thermal stress induced in a bar due to temperature rise at 90 °C. Take E = 70 kPa and $\alpha b = 23.1 \times 10^{-6}$ /°C.
- 9. Define shear force, bending moment and point of contra flexure.
- **10.** Calculate maximum shear force and bending moment for a given beam :

PART—B 8×5=40

Instructions : (1) Answer **all** questions.

*

- (2) Each question carries **eight** marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- **11.** (a) Find the magnitude and direction of the resultant force for the following forces acting at a point :
 - (i) 90 kN due North
 - (ii) 40 kN due Northeast
 - (iii) 60 kN inclined 30° East to South
 - (iv) 80 kN inclined 60° South of West
 - (v) 60 kN due West

/7021

*

2

[Contd...

(OR)

*

(b) Find the magnitude and direction of the resultant for the given system.

12. (a) Calculate the centroid for an inverted T-beam having flange dimensions as 200 × 20 mm and web as 200 × 20 mm.

(OR)

(b) Calculate the centroid for a channel section having overall thickness 20 mm.

/7021

*

[Contd...

13. (a) Calculate the moment of inertia for given I-section about centroidal axis :

*

(OR)

- (b) Find the moment of inertia of an unequal angle $150 \times 120 \times 20$ mm with longer leg vertical.
- 14. (a) A reinforced concrete column 400 mm dia is provided with 8 bars of 20 mm dia steel. The column carries an axial load of 1000 kN. Find the stresses in concrete and steel. Take modular ratio = 15.

(OR)

(b) A rectangular steel bar 60 mm wide and 10 mm thick, 3 m long is subjected to an axial pull of 80 kN if the increase in length is 2 mm and decrease in thickness is 0.0022 mm. Determine three elastic constants and Poisson's ratio of the material.

*

[Contd...

15. (a) Calculate maximum shear force and bending moment and draw the shear force and bending moment diagram for the given beam :

(**OR**)

(b) Calculate maximum shear force and bending moment and draw the shear force and bending moment diagram for the given beam.

$$A \xrightarrow{3 \text{ kN/m B}} C \xrightarrow{D 4 \text{ kN/m}} E$$

$$4 \xrightarrow{2 \text{ m}} 2 \text{ m} \xrightarrow{2 \text{$$

*

*

- (2) The question carries **ten** marks.
- **16.** A composite bar of length 2.5 m is acted upon by forces shown in figure. Find the total elongation of the bar. Take $E = 2 \times 10^5 \text{ N/mm}^2$. Block *AB* and *CD* = Square section (200 × 200 mm) Block *BC* = Circular section (30 mm dia)

