7021

BOARD DIPLOMA EXAMINATION, (C-20)

OCTOBER / NOVEMBER—2023
DCE - FIRST YEAR EXAMINATION
ENGINEERING MECHANICS
Time : 3 Hours]
[Total Marks : 80

PART—A

$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State the fundamental quantities and their units in S.I.system.
2. Define force and state the characteristics of force.
3. Define (a) Moment of a force (b) Coplanar force and (c) Like parallel forces.
4. Locate the centroid of an angle section $150 \times 150 \times 20 \mathrm{~mm}$.
5. Calculate $I_{x x}$ and $I_{y y}$ of a hollow rectangular section $200 \times 300 \mathrm{~mm}$ and thickness 15 mm .
6. Define : (a) Malleability (b) Hardness and (c) Ductility.
7. A bar of 8 mm dia, 1.2 m long is subjected to an axial pull. If the change in length is 3 mm and change in diameter is 0.005 mm , find Poisson's ratio.
8. A bar of 5 m long is subjected to a rise in temperature of $50^{\circ} \mathrm{C}$. If $\mathrm{E}=210 \mathrm{GPa}$ and $a=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, find the expansion of the bar and stress in the bar if expansion is prevented.
9. Define : (a) Shear force
(b) Bending moment
(c) Point of Contraflexture.
10. A simply supported beam of span 3 m is carrying a UDL of $4 \mathrm{kN} / \mathrm{m}$ over entire span. Draw SFD and BMD and indicate the values.

PART—B
$8 \times 5=40$

Instructions : (1) Answer either (a) or (b) from each questions.
(2) Each question carries eight marks.
(3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
11. (a) Find the magnitude and direction of resultant of the following system of concurrent forces :

Forces: 20 kN due North
18 kN acting at 30° West of North
12 kN due SW
15 kN due $\mathrm{S} 60^{\circ} \mathrm{E}$
(OR)
(b) A wheel has 5 spokes which are equispaced. The forces acting in 3 consecutive spokes are $25 \mathrm{kN}, 30 \mathrm{kN}$ and 20 kN . Find the forces in other two spokes if the wheel is in equilibrium.
12. (a) Locate the centroid of the following section.

(b) A semicircular part is removed from a trapezium as shown in Fig-1. Locate the centroid of the remaining area (hatched area).

Fig-1
13. (a) Calculate $I_{x x}$ and $I_{y y}$ for the following section.

(OR)
(b) Two ILSC300 sections are placed back to back at a clear distance of 100 mm . They are connected by a cover plate of $300 \times 20 \mathrm{~mm}$, one at top and one at bottom. Find $I_{x x}$ and $I_{y y}$ of the built up section. Properties of ISLC300 are Area $=4210 \mathrm{~mm}^{2}$, $I_{x x}=6.05 \times 10^{7} \mathrm{~mm}^{4}, I_{y y}=3.46 \times 10^{6} \mathrm{~mm}^{4}, C_{Y Y}=25.5 \mathrm{~mm}$ and Flange width $=100 \mathrm{~mm}$.
14. (a) A steel bar 1.8 m long is acted upon by forces as shown in fig-2. Find the elongation of the bar. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig-2

(OR)

(b) A mild steel flat 150 mm wide $\times 20 \mathrm{~mm}$ thick and 6 m long is subjected to an axial pull of 300 kN . If $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and Poisson's ratio is $0 \cdot 26$, calculate the change in length, width, thickness and volume of the flat. Also calculate bulk modulus for the material.
15. (a) A cantilever beam of span 5 m carries a UDL of $3 \mathrm{kN} / \mathrm{m}$ over a length of 2 m starting from the free end. It also supports two point loads 4 kN and 5 kN at 1 m and 3 m from fixed end. Draw SFD and BMD.
(OR)
(b) A simply supported beam 8 m span carries a point load 4 kN each at 2 m from left support and 2 m from right support. It also carries a UDL of $2 \mathrm{kN} / \mathrm{m}$ between the point loads. Draw SFD and BMD and calculate max B.M. for the beam.

PART—C $10 \times 1=10$

Instructions : (1) Answer the following question.
(2) The question carries ten marks.
(3) Answer should be comprehensive and the criterion for valuation is the content but not the length of the answer.
16. A body of weight W falls through a height of 19 mm onto a collar rigidly attached to a vertical bar 2.5 m long and $20 \mathrm{~mm} \times 30 \mathrm{~mm}$ cross-section. If the instantaneous elongation in the bar is 2 mm , determine the value of W.What is the strain energy stored in the bar. Take $\mathrm{E}=200 \mathrm{GPa}$.

