

C20-C-403

7426

BOARD DIPLOMA EXAMINATION, (C-20) JUNE/JULY—2022

DCE - FOURTH SEMESTER EXAMINATION

QUANTITY SURVEYING - I

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer all questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed five simple sentences.
- 1. Write the units for the following:
 - (a) Plastering
 - (b) RCC
 - (c) Sand filling
- 2. Write the formats for preparation of detailed estimation and abstract estimation.
- 3. Prepare the approximate estimate of proposed construction of building having plinth area of 150 m² and plinth area rate is `2100.
- 4. A room has $6.0 \text{ m} \times 4.5 \text{ m}$ internal dimensions with 300 mm wall thickness. The basement of cross-section of 400 mm width and 600 mm height. Calculate (a) plinth area and (b) brick masonry in CM (1:8) in basement.

/7426 1 [Contd...

5. From the accompanying figure. Calculate the following:

- (a) Length of ridge piece
- (b) Length of common rafters
- (c) No. of common rafters

- 6. Calculate the quantity of cement required in bags for the following items of work:
 - (a) CRS Masonry in CM (1:6) using granite stone for 15 cum of work if 0.36 cum CM is required for 1 cum Masonry.
 - (b) Plastering with CM (1:4), 12 mm thick for 100 sqm of work if 0·16 cum of CM is required for 10 sqm of plastering.

7. Write short notes on following terms:

- (a) Blasting charges
- (b) Seigniorage charges
- (c) Cess charges
- 8. Find the cost of bricks at site if the lead is 4 km MR and 3 km CT. Take the rate of bricks per 1000 Nos. as `1500 at source.

/7426 2 [Contd...

- 9. Define the terms lead and lift used in road formation and give their initial values.
- 10. Find the volume of earthwork in road embankment of length 1.5 Km, top width is 7.0 m depth 3.5 m and side slopes 2:1.

PART—B 8×5=40

Instructions: (1) Answer either (a) or (b) from each question.

- (2) Each question carries eight marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- 11. (a) Prepare an approximate estimate for a building with a total plinth area of 340 m². Given that
 - (i) Plinth area rate `7500
 - (ii) Extra for architecture appearance = $2\frac{1}{2}$ % of building cost
 - (iii) Extra for Electrical installation = 13% of building cost
 - (iv) Extra for water supply and sanitation installation = 6% of building cost
 - (v) Contingencies = $3\frac{1}{2}\%$
 - (vi) Super vision charges = 8%

(OR)

- (b) State and explain the methods of preparing approximate estimates.
- 12. (a) Prepare the detailed estimate for the following items of work from the Fig-1.
 - (i) Cement concrete (1:4:8) in foundation bed
 - (ii) RR masonry in CM 1:6 for foundation
 - (iii) RCC 1: 1.5: 3 for RCC Slab

/7426 3 [Contd...

Fig. 1 (OR)

- (b) Prepare the detailed estimate for the following items of work from the Fig-1.
 - (i) Earth work excavation for foundation
 - (ii) Internal plastering in CM 1: 4 without deduction
 - (iii) RR Masonry in CM 1: 6 for basement
- 13. (a) For the building shown in Fig. 2, Calculate the quantities of the following items of work:
 - (i) RCC (M20) using HBG metal for all column footings
 - (ii) Brick Masonry in CM 1: 4 without deductions

(OR)

- (b) For the building shown in Fig. 2, Calculate the quantities of the following items of work.
 - (i) RCC (M20) using HBG metal for all columns
 - (ii) Plastering in CM 1: 3 without deductions

/7426 4 [Contd...

- 14. (a) Prepare a data sheet and calculate the cost of the items given below:
 - (i) Cement concrete (1:4:8) using 40mm HBG metal—1 m³
 - (ii) RR masonry in CM (1:6)—1 m³

Materials and labor required for:

Cement concrete (1:4:8)—1 m RR masonry in CM (1:4)—1 m³

0.92 m³—HBG metal 1.10 m³—Rough stone

---- m^3 —Sand 0.34 m^3 —CM (1:4)

---- m^3 —Cement 1.80 Nos.—Mason

0·20 Nos.—Mason 2·80 Nos.—Mazdoors

3·20 Nos.—Mazdoors LS sundries

LS sundries

/7426 5 [Contd...

Lead statement of materials:

S1. No.	Materials	Rate (`)	Per	Lead	Conveyance charges
1	40 mm size HBG metal	450	1 m ³	10 km	`14 per 1 km
2	Sand	350	1 m ³	8 km	`12 per 1 km
3	Rough stone	310	1 m ³	5 km	`10 per 1 km
4	Cement	6,800	1 ton	At site	

Labour charges per day:

- 1. Mason I class = `440
- 2. Mason II class = \ 420
- 3. Mazdoor = 350
- 4. Hand mixing charges for CM per $m^3 = 60$ (OR)
- (b) Prepare the data sheet and calculate the cost for the following items of work:
 - (i) RR masonry with CM (1:6) unit-1 m³

1.05 m³ Rough stone

 $0.34 \text{ m}^3 \text{ CM } (1:6)$

1.8 Nos. Mason

2.8 Nos. Man mazdoor

LS Sundries

(ii) Pointing to RR masonry in CM (1:4) unit-10 m²

 $0.09 \text{ m}^3 \text{ CM } (1:4)$

2.28 Nos. Mason

0.5 Nos. Man mazdoor

1.1 Nos. Woman mazdoor

LS Sundries

/7426 6 [Contd...

Lead Statement of Materials:

S1. No.	Materials	Rate (`)	Per	Lead	Conveyance charges
1	Rough stone	360	1 m ³	15 km	`12 per 1 km
2	Sand	75	1 m ³	10 km	`13 per 1 km
3	Cement	3600	MT	At site	

Labour Charges:

Mason = 225.00/day

Men mazdoor = ` 180.00/day Women

mazdoor = 180.00/day Mixing

charges for CM = $^{40\cdot00/m^3}$

15. (a) A road in Embankment has the following data:

Chainage (in m)	0	30	60	90	120	150
RL of ground (in m)	30.80	31.25	31.85	32.25	33.00	35.20

Formation level at chainage zero is 33.00 and having a rising gradient of 1 in 120. Top width of formation is 10.5 m and side slope 2H: 1V. Assuming that the transverse slope of the ground is in level, calculate the volume of earth by —

- (i) Trapezoidal formula;
- (ii) Prismoid formula.

(OR)

- (b) The contour levels and contour areas of a depression are given below. The bed level of the depression is at 68 m contour and is to be filled up to 74 m. Calculate the earthwork quantity by using:
 - (i) Trapezoidal rule
 - (ii) Prismoidal rule

Contour level (in m)	68	69	70	71	72	73	74
Area of contour (in sq. m)	99	103	110	116	120	132	137

/7426 7 [Contd...

PART—C $10 \times 1 = 10$

Instructions: (1) Answer the following question.

- (2) The question carries ten marks.
- (3) Answers should be comprehensive and criterion for valuation is the content but not the length of the answer.
- 16. Calculate the following quantities of a septic tank shown in Fig. 3.
 - (i) CC 1:4:8 for foundation
 - (ii) Brick masonry in CM 1:6 for side walls
 - (iii) RCC 1:2:4 for roof cover, Scum board and baffle wall

/7426 8 AA22-PDF

* * *